Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 33(6): e17282, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299701

RESUMO

Many species are shifting their ranges in response to climate-driven environmental changes, particularly in high-latitude regions. However, the patterns of dispersal and colonization during range shifting events are not always clear. Understanding how populations are connected through space and time can reveal how species navigate a changing environment. Here, we present a fine-scale population genomics study of gentoo penguins (Pygoscelis papua), a presumed site-faithful colonial nesting species that has increased in population size and expanded its range south along the Western Antarctic Peninsula. Using whole genome sequencing, we analysed 129 gentoo penguin individuals across 12 colonies located at or near the southern range edge. Through a detailed examination of fine-scale population structure, admixture, and population divergence, we inferred that gentoo penguins historically dispersed rapidly in a stepping-stone pattern from the South Shetland Islands leading to the colonization of Anvers Island, and then the adjacent mainland Western Antarctica Peninsula. Recent southward expansion along the Western Antarctic Peninsula also followed a stepping-stone dispersal pattern coupled with limited post-divergence gene flow from colonies on Anvers Island. Genetic diversity appeared to be maintained across colonies during the historical dispersal process, and range-edge populations are still growing. This suggests large numbers of migrants may provide a buffer against founder effects at the beginning of colonization events to maintain genetic diversity similar to that of the source populations before migration ceases post-divergence. These results coupled with a continued increase in effective population size since approximately 500-800 years ago distinguish gentoo penguins as a robust species that is highly adaptable and resilient to changing climate.


Assuntos
Efeito Fundador , Spheniscidae , Humanos , Animais , Densidade Demográfica , Spheniscidae/genética , Regiões Antárticas , Sequenciamento Completo do Genoma
2.
Proc Biol Sci ; 290(1991): 20221334, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695033

RESUMO

Pleistocene climate cycles are well documented to have shaped contemporary species distributions and genetic diversity. Northward range expansions in response to deglaciation following the Last Glacial Maximum (LGM; approximately 21 000 years ago) are surmised to have led to population size expansions in terrestrial taxa and changes in seasonal migratory behaviour. Recent findings, however, suggest that some northern temperate populations may have been more stable than expected through the LGM. We modelled the demographic history of 19 co-distributed boreal-breeding North American bird species from full mitochondrial gene sets and species-specific molecular rates. We used these demographic reconstructions to test how species with different migratory strategies were affected by glacial cycles. Our results suggest that effective population sizes increased in response to Pleistocene deglaciation earlier than the LGM, whereas genetic diversity was maintained throughout the LGM despite shifts in geographical range. We conclude that glacial cycles prior to the LGM have most strongly shaped contemporary genetic diversity in these species. We did not find a relationship between historic population dynamics and migratory strategy, contributing to growing evidence that major switches in migratory strategy during the LGM are unnecessary to explain contemporary migratory patterns.


Assuntos
Aves , Variação Genética , Animais , Densidade Demográfica , Aves/genética , Dinâmica Populacional , Geografia , América do Norte , Filogeografia , Filogenia , DNA Mitocondrial/genética
3.
Sci Rep ; 8(1): 3926, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500389

RESUMO

Despite concerted international effort to track and interpret shifts in the abundance and distribution of Adélie penguins, large populations continue to be identified. Here we report on a major hotspot of Adélie penguin abundance identified in the Danger Islands off the northern tip of the Antarctic Peninsula (AP). We present the first complete census of Pygoscelis spp. penguins in the Danger Islands, estimated from a multi-modal survey consisting of direct ground counts and computer-automated counts of unmanned aerial vehicle (UAV) imagery. Our survey reveals that the Danger Islands host 751,527 pairs of Adélie penguins, more than the rest of AP region combined, and include the third and fourth largest Adélie penguin colonies in the world. Our results validate the use of Landsat medium-resolution satellite imagery for the detection of new or unknown penguin colonies and highlight the utility of combining satellite imagery with ground and UAV surveys. The Danger Islands appear to have avoided recent declines documented on the Western AP and, because they are large and likely to remain an important hotspot for avian abundance under projected climate change, deserve special consideration in the negotiation and design of Marine Protected Areas in the region.


Assuntos
Distribuição Animal , Mapeamento Geográfico , Imagens de Satélites/métodos , Spheniscidae/crescimento & desenvolvimento , Animais , Mudança Climática , Ilhas , Dinâmica Populacional , Spheniscidae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA