Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Microbiol Biotechnol ; 104(9): 4059-4069, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32179949

RESUMO

Geobacter sulfurreducens is capable of reducing Pd(II) to Pd(0) using acetate as electron donor; however, the biochemical and genetic mechanisms involved in this process have not been described. In this work, we carried out transcriptome profiling analysis to identify the genes involved in Pd(II) reduction in this bacterium. Our results showed that 252 genes were upregulated while 141 were downregulated during Pd(II) reduction. Among the upregulated genes, 12 were related to energy metabolism and electron transport, 50 were classified as involved in protein synthesis, 42 were associated to regulatory functions and transcription, and 47 have no homologs with known function. RT-qPCR data confirmed upregulation of genes encoding PilA, the structural protein for electrically conductive pili, as well as c-type cytochromes GSU1062, GSU2513, GSU2808, GSU2934, GSU3107, OmcH, OmcM, PpcA, and PpcD under Pd(II)-reducing conditions. ΔpilA and ΔpilR mutant strains showed 20% and 40% decrease in the Pd(II)-reducing capacity, respectively, as compared to the wild type strain, indicating the central role of pili in this process. RT-qPCR data collected during Pd(II) reduction also confirmed downregulation of omcB, omcC, omcZ, and omcS genes, which have been shown to be involved in the reduction of Fe(III) and electrodes. The present study contributes to elucidate the mechanisms involved in Pd(II) reduction by G. sulfurreducens. Graphical Abstract KEY POINTS: • Transcriptome analysis provided evidence on Pd(II) reduction by G. sulfurreducens. • Results indicate that electrically conductive pili is involved in Pd(II) reduction. • G. sulfurreducens was not able to grow under Pd(II)-reducing conditions. • The study contributes to a better understanding of the mechanisms in Pd(II) reduction.


Assuntos
Citocromos/genética , Perfilação da Expressão Gênica , Geobacter/genética , Paládio/metabolismo , Citocromos/classificação , Regulação para Baixo , Transporte de Elétrons/genética , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Oxirredução , Regulação para Cima
2.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341676

RESUMO

Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm-3 · day-1 Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year-1 in coastal wetlands and more than 1,300 Tg · year-1, considering the global wetland area.IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Anaerobiose , Antraquinonas/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Oxirredução , Áreas Alagadas
3.
Artigo em Inglês | MEDLINE | ID: mdl-38758442

RESUMO

Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioelectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, hematite (Fe2O3) on glass, fluorine-doped tin oxide (FTO) semiconductor glass, Fe2O3 on FTO, graphite, and stainless steel) by G. sulfurreducens DL1 (WT) and GSU1771-deficient strain mutant (Δgsu1771). GSU1771 is a transcriptional regulator that controls the expression of several genes involved in electron transfer. Different approaches and experimental tests were carried out with the biofilms grown on the different support materials including structure analysis by confocal laser scanning microscopy (CLSM), characterization of electrochemical activity, and quantification of relative gene expression by RT-qPCR. The gene expression of selected genes involved in EET was analyzed, observing an overexpression of pgcA, omcS, omcM, and omcF from Δgsu1771 biofilms compared to those from WT, also the overexpression of the epsH gene, which is involved in exopolysaccharide synthesis. Although we observed that for the Δgsu1771 mutant strain, the associated redox processes are similar to the WT strain, and more current is produced, we think that this could be associated with a higher relative expression of certain genes involved in EET and in the production of exopolysaccharides despite the chemical environment where the biofilm develops. This study supports that G. sulfurreducens is capable of adapting to the electrochemical environment where it grows.

4.
Appl Microbiol Biotechnol ; 97(6): 2503-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22878844

RESUMO

Azotobacter vinelandii, a soil nitrogen fixing bacterium, produces alginate a polysaccharide with industrial and medical relevant applications. In this work, we characterized a miniTn5 mutant, named GG101, that showed a 14-fold increase in the specific production of alginate when grown diazotrophically on solid minimal medium comparing to the parental E strain (also named AEIV). Quantitative real-time reverse transcription PCR analysis indicated that this increased alginate production was due to higher expression levels of several biosynthetic alg genes such as algD. Sequencing of the locus interrupted in GG101 indicated that the miniTn5 was inserted in the positive strand, and 10 bp upstream the start codon of the gene ubiA, encoding the enzyme for the second step in the biosynthesis of ubiquinone (Q8). Both the transcription of ubiA and the content of Q8 are decreased in the mutant GG101 when compared to the wild-type strain E. Genetic complementation of mutant GG101 with a wild-type copy of the ubiCA genes restored the content of Q8 and reduced the production of alginate to levels similar to those of the parental E strain. Furthermore, respirometric analysis showed a reproducible decrease of about 8 % in the respiratory capacity of mutant GG101, at exponential phase of growth in liquid minimal medium. Collectively, our data show that a decreased content in Q8 results in higher levels of alginate in A. vinelandii.


Assuntos
Azotobacter vinelandii/metabolismo , Regulação Bacteriana da Expressão Gênica , Ubiquinona/metabolismo , Alginatos , Azotobacter vinelandii/genética , Vias Biossintéticas/genética , Meios de Cultura/química , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Teste de Complementação Genética , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Mutagênese Insercional , Fixação de Nitrogênio , Reação em Cadeia da Polimerase em Tempo Real
5.
PLoS One ; 18(10): e0293359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878651

RESUMO

Electroactive biofilms formation by the metal-reducing bacterium Geobacter sulfurreducens is a step crucial for bioelectricity generation and bioremediation. The transcriptional regulator GSU1771 controls the expression of essential genes involved in electron transfer and biofilm formation in G. sulfurreducens, with GSU1771-deficient producing thicker and more electroactive biofilms. Here, RNA-seq analyses were conducted to compare the global gene expression patterns of wild-type and Δgsu1771 mutant biofilms grown on non-conductive (glass) and conductive (graphite electrode) materials. The Δgsu1771 biofilm grown on the glass surface exhibited 467 differentially expressed (DE) genes (167 upregulated and 300 downregulated) versus the wild-type biofilm. In contrast, the Δgsu1771 biofilm grown on the graphite electrode exhibited 119 DE genes (79 upregulated and 40 downregulated) versus the wild-type biofilm. Among these DE genes, 67 were also differentially expressed in the Δgsu1771 biofilm grown on glass (56 with the same regulation and 11 exhibiting counter-regulation). Among the upregulated genes in the Δgsu1771 biofilms, we identified potential target genes involved in exopolysaccharide synthesis (gsu1961-63, gsu1959, gsu1972-73, gsu1976-77). RT-qPCR analyses were then conducted to confirm the differential expression of a selection of genes of interest. DNA-protein binding assays demonstrated the direct binding of the GSU1771 regulator to the promoter region of pgcA, pulF, relA, and gsu3356. Furthermore, heme-staining and western blotting revealed an increase in c-type cytochromes including OmcS and OmcZ in Δgsu1771 biofilms. Collectively, our findings demonstrated that GSU1771 is a global regulator that controls extracellular electron transfer and exopolysaccharide synthesis in G. sulfurreducens, which is crucial for electroconductive biofilm development.


Assuntos
Geobacter , Grafite , Grafite/metabolismo , Transporte de Elétrons/genética , Biofilmes , Citocromos/metabolismo , Geobacter/metabolismo , Eletrodos , Oxirredução
6.
Microbiology (Reading) ; 158(Pt 8): 1953-1963, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609755

RESUMO

In Azotobacter vinelandii the two-component GacS/GacA system is required for synthesis of polyhydroxybutyrate (PHB) and of the exopolysaccharide alginate. The RsmA protein was shown to interact with the alginate biosynthetic algD mRNA, acting as a translational repressor, and GacA was found to activate transcription of the rsmZ1 and rsmZ2 genes that encode small RNAs interacting with RsmA to counteract its repressor activity. The phbBAC operon encodes the enzymes of PHB synthesis and is activated by the transcriptional regulator PhbR. This study shows that GacA is required for transcription of one rsmY and seven rsmZ1-rsmZ7 genes present in the A. vinelandii genome, and that inactivation of rsmA results in increased PHB production. Transcriptional and translational phbR-gusA gene fusions were used to show that the gacA mutation negatively affected the expression of the phbR gene at the translational level. We also demonstrated an in vitro interaction of RsmA with RNAs corresponding to phbB and phbR mRNA leaders, and showed that the stability of phbR and phbB mRNAs is increased in the rsmA mutant. Taken together these results indicate that in A. vinelandii, RsmA post-transcriptionally represses the expression of PhbR.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidroxibutiratos/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Azotobacter vinelandii/química , Azotobacter vinelandii/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas , Dados de Sequência Molecular , Óperon , Proteínas Repressoras/química , Proteínas Repressoras/genética , Alinhamento de Sequência
7.
Bioelectrochemistry ; 145: 108101, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334296

RESUMO

Type IV pili and the >100c-type cytochromes in Geobacter sulfurreducens are essential for extracellular electron transfer (EET) towards metal oxides and electrodes. A previous report about a mutation in the gsu1771 gene indicated an enhanced reduction of insoluble Fe(III) oxides coupled with increased pilA expression. Herein, a marker-free gsu1771-deficient mutant was constructed and characterized to assess the role of this regulator in EET and the formation of electroactive biofilms. Deleting this gene delayed microbial growth in the acetate/fumarate media (electron donor and acceptor, respectively). However, this mutant reduced soluble and insoluble Fe(III) oxides more efficiently. Heme staining, western blot, and RT-qPCR analyses demonstrated that GSU1771 regulates the transcription of several genes (including pilA) and many c-type cytochromes involved in EET, suggesting the broad regulatory role of this protein. DNA-protein binding assays indicated that GSU1771 directly regulates the transcription of pilA, omcE, omcS, and omcZ. Additionally, gsu1771-deficient mutant biofilms are thicker than wild-type strains. Electrochemical studies revealed that the current produced by this biofilm was markedly higher than the wild-type strains (approximately 100-fold). Thus, demonstrating the role of GSU1771 in the EET pathway and establishing a methodology to develop highly electroactive G. sulfurreducens mutants.


Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos , Geobacter , Biofilmes , Citocromos , Transporte de Elétrons , Elétrons , Compostos Férricos/metabolismo , Geobacter/metabolismo , Oxirredução , Óxidos
8.
Microbiology (Reading) ; 157(Pt 11): 3014-3023, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21778206

RESUMO

We previously showed that in Azotobacter vinelandii, accumulation of polyhydroxybutyrate (PHB) occurs mainly during the stationary phase, and that a mutation in phbR, encoding a transcriptional regulator of the AraC family, reduces PHB accumulation. In this study, we characterized the roles of PhbR and RpoS, a central regulator during stationary phase in bacteria, in the regulation of expression of the PHB biosynthetic operon phbBAC and phbR. We showed that inactivation of rpoS reduced PHB accumulation, similar to the phbR mutation, and inactivation of both rpoS and phbR resulted in an inability to produce PHB. We carried out expression studies with the wild-type, and the rpoS, phbR and double rpoS-phbR mutant strains, using quantitative RT-PCR, as well as phbB : : gusA and phbR : : gusA gene fusions. These studies showed that both PhbR and RpoS act as activators of phbB and phbR, and revealed a role for PhbR as an autoactivator. We also demonstrated that PhbR binds specifically to two almost identical 18 bp sites, TGTCACCAA-N(4)-CACTA and TGTCACCAA-N(4)-CAGTA, present in the phbB promoter region. The activation of phbB and phbR transcription by RpoS reported here is in agreement with the observation that accumulation of PHB in A. vinelandii occurs mainly during the stationary phase.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroxibutiratos/metabolismo , Fator sigma/metabolismo , Ativação Transcricional , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Pegada de DNA , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Mutação , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Fator sigma/genética
9.
Front Microbiol ; 12: 626443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737919

RESUMO

Integration host factor (IHF) is a widely distributed small heterodimeric protein member of the bacterial Nucleoid-Associated Proteins (NAPs), implicated in multiple DNA regulatory processes. IHF recognizes a specific DNA sequence and induces a large bend of the nucleic acid. IHF function has been mainly linked with the regulation of RpoN-dependent promoters, where IHF commonly recognizes a DNA sequence between the enhancer-binding region and the promoter, facilitating a close contact between the upstream bound activator and the promoter bound, RNA polymerase. In most proteobacteria, the genes encoding IHF subunits (ihfA and ihfB) are found in a single copy. However, in some Deltaproteobacteria, like Geobacter sulfurreducens, those genes are duplicated. To date, the functionality of IHF reiterated encoding genes is unknown. In this work, we achieved the functional characterization of the ihfA-1, ihfA-2, ihfB-1, and ihfB-2 from G. sulfurreducens. Unlike the ΔihfA-2 or ΔihfB-1 strains, single gene deletion in ihfA-1 or ihfB-2, provokes an impairment in fumarate and Fe(III) citrate reduction. Accordingly, sqRT-PCR experiments showed that ihfA-1 and ihfB-2 were expressed at higher levels than ihfA-2 and ihfB-1. In addition, RNA-Seq analysis of the ΔihfA-1 and ΔihfB-2 strains revealed a total of 89 and 122 differentially expressed genes, respectively. Furthermore, transcriptional changes in 25 genes were shared in both mutant strains. Among these genes, we confirmed the upregulation of the pilA-repressor, GSU1771, and downregulation of the triheme-cytochrome (pgcA) and the aconitate hydratase (acnA) genes by RT-qPCR. EMSA experiments also demonstrated the direct binding of IHF to the upstream promoter regions of GSU1771, pgcA and acnA. PilA changes in ΔihfA-1 and ΔihfB-2 strains were also verified by immunoblotting. Additionally, heme-staining of subcellular fractions in ΔihfA-1 and ΔihfB-2 strains revealed a remarkable deficit of c-type cytochromes. Overall, our data indicate that at least during fumarate and Fe(III) citrate reduction, the functional IHF regulator is likely assembled by the products of ihfA-1 and ihfB-2. Also, a role of IHF controlling expression of multiple genes (other than RpoN-dependent) affects G. sulfurreducens physiology and extracellular electron transfer.

10.
Environ Sci Pollut Res Int ; 24(33): 25693-25701, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26888530

RESUMO

In Geobacter sulfurreducens, metal reduction and generation of bioelectricity require the participation of several elements, and among them, the type IV pili has an essential role. The pilus is composed of multiple PilA monomers. Expression of pilA gene depends mainly on the σ54 factor and the response regulator protein PilR. In this work, we characterized the role of the PilS-PilR two-component system in the regulation of the pilA gene expression. Experimental evidence indicates that PilS is autophosphorylated at the His-334 residue, which in turn is transferred to the conserved Asp-53 in PilR. Contrary to other PilS-PilR systems, substitution D53N in PilR resulted in higher activation of the pilA gene. By using a pilA::luxCDABE fusion with different promoter fragments and in vitro DNA-binding assays, we demonstrated the existence of multiple functional PilR binding sites. A regulatory model in which the non-phosphorylated PilR protein directs activation of pilA expression by binding to two sites in the promoter region of this gene is presented.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Geobacter/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Geobacter/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA