Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 568(7750): 88-92, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918402

RESUMO

Agriculture and the exploitation of natural resources have transformed tropical mountain ecosystems across the world, and the consequences of these transformations for biodiversity and ecosystem functioning are largely unknown1-3. Conclusions that are derived from studies in non-mountainous areas are not suitable for predicting the effects of land-use changes on tropical mountains because the climatic environment rapidly changes with elevation, which may mitigate or amplify the effects of land use4,5. It is of key importance to understand how the interplay of climate and land use constrains biodiversity and ecosystem functions to determine the consequences of global change for mountain ecosystems. Here we show that the interacting effects of climate and land use reshape elevational trends in biodiversity and ecosystem functions on Africa's largest mountain, Mount Kilimanjaro (Tanzania). We find that increasing land-use intensity causes larger losses of plant and animal species richness in the arid lowlands than in humid submontane and montane zones. Increases in land-use intensity are associated with significant changes in the composition of plant, animal and microorganism communities; stronger modifications of plant and animal communities occur in arid and humid ecosystems, respectively. Temperature, precipitation and land use jointly modulate soil properties, nutrient turnover, greenhouse gas emissions, plant biomass and productivity, as well as animal interactions. Our data suggest that the response of ecosystem functions to land-use intensity depends strongly on climate; more-severe changes in ecosystem functioning occur in the arid lowlands and the cold montane zone. Interactions between climate and land use explained-on average-54% of the variation in species richness, species composition and ecosystem functions, whereas only 30% of variation was related to single drivers. Our study reveals that climate can modulate the effects of land use on biodiversity and ecosystem functioning, and points to a lowered resistance of ecosystems in climatically challenging environments to ongoing land-use changes in tropical mountainous regions.


Assuntos
Agricultura/estatística & dados numéricos , Altitude , Biodiversidade , Ecossistema , Clima Tropical , Animais , Umidade , Microbiologia , Plantas , Chuva , Tanzânia , Temperatura
2.
J Bacteriol ; : e0019024, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832794

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a second messenger involved in diverse metabolic processes including osmolyte uptake, cell wall homeostasis, as well as antibiotic and heat resistance. This study investigates the role of the c-di-AMP receptor protein DarA in the osmotic stress response in Bacillus subtilis. Through a series of experiments, we demonstrate that DarA plays a central role in the cellular response to osmotic fluctuations. Our findings show that DarA becomes essential under extreme potassium limitation as well as upon salt stress, highlighting its significance in mediating osmotic stress adaptation. Suppressor screens with darA mutants reveal compensatory mechanisms involving the accumulation of osmoprotectants, particularly potassium and citrulline. Mutations affecting various metabolic pathways, including the citric acid cycle as well as glutamate and arginine biosynthesis, indicate a complex interplay between the osmotic stress response and metabolic regulation. In addition, the growth defects of the darA mutant during potassium starvation and salt stress in a strain lacking the high-affinity potassium uptake systems KimA and KtrAB can be rescued by increased affinity of the remaining potassium channel KtrCD or by increased expression of ktrD, thus resulting in increased potassium uptake. Finally, the darA mutant can respond to salt stress by the increased expression of MleN , which can export sodium ions.IMPORTANCEEnvironmental bacteria are exposed to rapidly changing osmotic conditions making an effective adaptation to these changes crucial for the survival of the cells. In Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in this adaptation by controlling (i) the influx of physiologically compatible organic osmolytes and (ii) the biosynthesis of such osmolytes. In several bacteria, cyclic di-adenosine monophosphate (c-di-AMP) can bind to a signal transduction protein, called DarA, in Bacillus subtilis. So far, no function for DarA has been discovered in any organism. We have identified osmotically challenging conditions that make DarA essential and have identified suppressor mutations that help the bacteria to adapt to those conditions. Our results indicate that DarA is a central component in the integration of osmotic stress with the synthesis of compatible amino acid osmolytes and with the homeostasis of potassium, the first response to osmotic stress.

3.
BMC Plant Biol ; 24(1): 103, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331718

RESUMO

BACKGROUND: The establishment of mycorrhizal relationships between a fungus and a plant typically enhances nutrient and water uptake for the latter while securing a carbon source for the fungus. However, under a particular set of environmental conditions, such as low availability of light and abundant nutrients in the soil, the resources invested in the maintenance of the fungi surpass the benefits obtained by the host. In those cases, facultative mycorrhizal plants are capable of surviving without symbiosis. Facultative mycorrhization in ferns has been overlooked until now. The present study measured the response of Struthiopteris spicant L. Weiss, and its root-associated fungi to different levels of light and nutrient availability in terms of growth, mycorrhizal presence, and leaf nutrient content. This fern species exhibits a great tolerance to variable light, nutrient, and pH conditions, and it has been found with and without mycorrhizae. We conducted a greenhouse experiment with 80 specimens of S. spicant and three factors (Light, Phosphorus, and Nitrogen) resulting in eight treatments. RESULTS: We found a significant influence of the factor light on fungal community composition, plant biomass, and nutrient accumulation. Departing from a lack of colonization at the initial stage, plants showed a remarkable increment of more than 80% in the arbuscular mycorrhizal fungi (AMF) richness and abundance in their roots when grown under high light conditions, compared with the ones in low light. We also observed an upward trend of C:P and C:N ratios and the above- and belowground biomass production when AMF abundance increased. Furthermore, the compositional analysis of the whole fungal communities associated with S. spicant roots revealed clear differences among low-light and high-light treatments. CONCLUSIONS: This study is the first to investigate the importance of light and nutrient availability in determining fern-AMF relationships. We confirmed that Struthiopteris spicant is a facultative mycorrhizal plant. The composition and diversity of AMF found in the roots of this fern are strongly influenced by light and less by nutrient conditions. Our study shows that ferns respond very sensitively to changes in environmental factors, leading to shifts in the associated mycorrhizal communities.


Assuntos
Gleiquênias , Micorrizas , Raízes de Plantas , Micorrizas/fisiologia , Simbiose , Solo/química , Microbiologia do Solo
4.
Oecologia ; 205(1): 121-133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698245

RESUMO

Fine roots are multifunctional organs that may change function with ageing or root branching events from primarily absorptive to resource transport and storage functions. It is not well understood, how fine root branching patterns and related root functional differentiation along the longitudinal root axis change with soil chemical and physical conditions. We examined the variation in fine root branching patterns (the relative frequency of 1st to 4th root orders) and root morphological and chemical traits of European beech trees with soil depth (topsoil vs. subsoil) and soil chemistry (five sites with acid to neutral/alkaline bedrock). Bedrock type and related soil chemistry had an only minor influence on branching patterns: base-poor, infertile sites showed no higher fine root branching than base-rich sites. The contribution of 1st-order root segments to total fine root length decreased at all sites from about 60% in the topsoil (including organic layer) to 45% in the lower subsoil. This change was associated with a decrease in specific root area and root N content and an increase in mean root diameter with soil depth, while root tissue density did not change consistently. We conclude that soil depth (which acts through soil physical and chemical drivers) influences the fine root branching patterns of beech much more than soil chemical variation across soil types. To examine whether changes in root function are indeed triggered by branching events or result from root ageing and diameter growth, spatially explicit root physiological and anatomical studies across root orders are needed.


Assuntos
Fagus , Raízes de Plantas , Solo , Raízes de Plantas/anatomia & histologia , Fagus/anatomia & histologia , Fenótipo
5.
Oecologia ; 201(4): 1089-1107, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36944897

RESUMO

Tropical forests are threatened by anthropogenic activities such as conversion into agricultural land, logging and fires. Land-use change and disturbance affect ecosystems not only aboveground, but also belowground including the ecosystems' carbon and nitrogen cycle. We studied the impact of different types of land-use change (intensive and traditional agroforestry, logging) and disturbance by fire on fine root biomass, dynamics, morphology, and related C and N fluxes to the soil via fine root litter across different ecosystems at different elevational zones at Mt. Kilimanjaro (Tanzania). We found a decrease in fine root biomass (80-90%), production (50%), and C and N fluxes to the soil via fine root litter (60-80%) at all elevation zones. The traditional agroforestry 'Chagga homegardens' (lower montane zone) showed enhanced fine root turnover rates, higher values of acquisitive root morphological traits, but similar stand fine root production, C and N fluxes compared to the natural forest. The decrease of C and N fluxes with forest disturbance was particularly strong at the upper montane zone (60 and 80% decrease, respectively), where several patches of Podocarpus forest had been disturbed by fire in the previous years. We conclude that changes on species composition, stand structure and land management practices resulting from land-use change and disturbance have a strong impact on the fine root system, modifying fine root biomass, production and the C and N supply to the soil from fine root litter, which strongly affects the ecosystems' C and N cycle in those East African tropical forest ecosystems.


Assuntos
Ecossistema , Solo , Solo/química , Biomassa , Tanzânia , Nitrogênio/análise , Florestas
6.
Oecologia ; 195(3): 797-812, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33630169

RESUMO

Tropical forests represent the largest store of terrestrial biomass carbon (C) on earth and contribute over-proportionally to global terrestrial net primary productivity (NPP). How climate change is affecting NPP and C allocation to tree components in forests is not well understood. This is true for tropical forests, but particularly for African tropical forests. Studying forest ecosystems along elevation and related temperature and moisture gradients is one possible approach to address this question. However, the inclusion of belowground productivity data in such studies is scarce. On Mt. Kilimanjaro (Tanzania), we studied aboveground (wood increment, litter fall) and belowground (fine and coarse root) NPP along three elevation transects (c. 1800-3900 m a.s.l.) across four tropical montane forest types to derive C allocation to the major tree components. Total NPP declined continuously with elevation from 8.5 to 2.8 Mg C ha-1 year-1 due to significant decline in aboveground NPP, while fine root productivity (sequential coring approach) remained unvaried with around 2 Mg C ha-1 year-1, indicating a marked shift in C allocation to belowground components with elevation. The C and N fluxes to the soil via root litter were far more important than leaf litter inputs in the subalpine Erica forest. Thus, the shift of C allocation to belowground organs with elevation at Mt. Kilimanjaro and other tropical forests suggests increasing nitrogen limitation of aboveground tree growth at higher elevations. Our results show that studying fine root productivity is crucial to understand climate effects on the carbon cycle in tropical forests.


Assuntos
Carbono , Ecossistema , Biomassa , Ciclo do Carbono , Florestas , Solo , Tanzânia , Árvores , Clima Tropical
7.
J Biol Chem ; 294(24): 9605-9614, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31061098

RESUMO

The signaling nucleotide cyclic di-AMP (c-di-AMP) is the only known essential second messenger in bacteria. Recently, c-di-AMP has been identified as being essential for controlling potassium uptake in the model organism Bacillus subtilis and several other bacteria. A B. subtilis strain lacking c-di-AMP is not viable at high potassium concentrations, unless the bacteria acquire suppressor mutations. In this study, we isolated such suppressor mutants and found mutations that reduced the activities of the potassium transporters KtrCD and KimA. Although c-di-AMP-mediated control of KtrCD has previously been demonstrated, it is unknown how c-di-AMP affects KimA activity. Using the DRaCALA screening assay, we tested for any interactions of KimA and other potential target proteins in B. subtilis with c-di-AMP. This assay identified KimA, as well as the K+/H+ antiporter KhtT, the potassium exporter CpaA (YjbQ), the osmoprotectant transporter subunit OpuCA, the primary Mg2+ importer MgtE, and DarB (YkuL), a protein of unknown function, as bona fide c-di-AMP-binding proteins. Further, binding of c-di-AMP to KimA inhibited potassium uptake. Our results indicate that c-di-AMP controls KimA-mediated potassium transport at both kimA gene expression and KimA activity levels. Moreover, the discovery that potassium exporters are c-di-AMP targets indicates that this second messenger controls potassium homeostasis in B. subtilis at a global level by binding to riboswitches and to different classes of transport proteins involved in potassium uptake and export.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Homeostase , Potássio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Mutação
8.
Mycorrhiza ; 29(2): 85-96, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30547252

RESUMO

In forest ecosystems, ectomycorrhizal (ECM) fungi are important for plant growth and soil biogeochemical processes. The biochemical composition of ECM mycelium is an important fungal effect trait with consequences for its decomposition rate, and consequently on soil carbon pools and plant nutrition. Although the link between ECM fungi and leaf litter-released nutrients is well known, the response of ECM fungal biochemical composition to different leaf litter species remains poorly understood. To determine how leaf litter quality influences ECM fungi's biochemical profiles, we planted young beech trees in an oak forest and replaced the natural leaf litter with that of European beech (Fagus sylvatica), ash (Fraxinus excelsior), maple (Acer pseudoplatanus), or lime (Tilia cordata). We assessed the biochemical profiles of ECM root tips colonized by common fungal taxa in temperate forests (i.e., Cenococcum geophilum, Inocybe sp., and Lactarius subdulcis), using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). ECM fungal biochemical composition changed with leaf litter species. Changes were apparent in the infrared absorption bands assigned to functional groups of lipids, amides, and carbohydrates. C. geophilum and L. subdulcis exhibited large spectral differences corresponding to the initial pattern of leaf litter chemical composition between samples collected in the beech and ash leaf litter treatments. In contrast, Inocybe sp. was influenced by lime, but with no differences between samples from ash or beech leaf litter treatments. Although the spectral bands affected by leaf litter type differed among ECM fungi, they were mainly related to amides, indicating a dynamic response of the fungal proteome to soil nutritional changes. Overall, the results indicate that the biochemical response of ECM fungi to leaf litter species varies among ECM fungal species and suggests that the biochemical composition of ECM mycelium is a fungal response trait, sensitive to environmental changes such as shifts in leaf litter species.


Assuntos
Florestas , Micorrizas/química , Folhas de Planta/microbiologia , Microbiologia do Solo , Árvores/microbiologia , Acer/microbiologia , Biomassa , Fagus/microbiologia , Fraxinus/microbiologia , Alemanha , Especificidade da Espécie , Tilia/microbiologia
9.
Oecologia ; 187(3): 825-837, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748934

RESUMO

Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.


Assuntos
Fagus , Árvores , Mudança Climática , Ecossistema , Florestas
10.
Oecologia ; 180(2): 601-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26546083

RESUMO

Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.


Assuntos
Agricultura , Mudança Climática , Produtos Agrícolas , Florestas , Folhas de Planta/química , Solo/química , Clima Tropical , Biomassa , Ciclo do Carbono , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Fósforo/metabolismo , Raízes de Plantas , Potássio/metabolismo , Estações do Ano , Árvores , Madeira
11.
Glob Chang Biol ; 21(10): 3620-34, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25980371

RESUMO

Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1)  yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1)  yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1)  yr(-1) ) due to very high fruit production (15-20 Mg ha(-1)  yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations.


Assuntos
Agricultura , Biomassa , Sequestro de Carbono , Conservação dos Recursos Naturais , Floresta Úmida , Arecaceae/crescimento & desenvolvimento , Hevea/crescimento & desenvolvimento , Indonésia
12.
Glob Chang Biol ; 20(5): 1481-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24115242

RESUMO

Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood specific gravity.


Assuntos
Secas , Floresta Úmida , Árvores/crescimento & desenvolvimento , Carbono/metabolismo , Ciclo do Carbono , Indonésia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Estações do Ano , Especificidade da Espécie , Árvores/anatomia & histologia , Madeira/crescimento & desenvolvimento
13.
Mycorrhiza ; 24(8): 645-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24756632

RESUMO

To determine the exchange of nitrogen and carbon between ectomycorrhiza and host plant, young beech (Fagus sylvatica) trees from natural regeneration in intact soil cores were labelled for one growing season in a greenhouse with (13)CO2 and (15)NO3 (15)NH4. The specific enrichments of (15)N and (13)C were higher in ectomycorrhizas (EMs) than in any other tissue. The enrichments of (13)C and (15)N were also higher in the fine-root segments directly connected with the EM (mainly second-order roots) than that in bulk fine or coarse roots. A strict, positive correlation was found between the specific (15)N enrichment in EM and the attached second-order roots. This finding indicates that strong N accumulators provide more N to their host than low N accumulators. A significant correlation was also found for the specific (13)C enrichment in EM and the attached second-order roots. However, the specific enrichments for (15)N and (13)C in EM were unrelated showing that under long-term conditions, C and N exchange between host and EMs are uncoupled. These findings suggest that EM-mediated N flux to the plant is not the main control on carbon flux to the fungus, probably because EMs provide many different services to their hosts in addition to N provision in their natural assemblages.


Assuntos
Carbono/metabolismo , Fagus/metabolismo , Fagus/microbiologia , Micorrizas/metabolismo , Nitrogênio/metabolismo , Simbiose
14.
Sci Total Environ ; 941: 173665, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823720

RESUMO

Recent hot droughts have caused tree vitality decline and increased mortality in many forest regions on earth. Most of Central Europe's important timber species have suffered from the extreme 2018/2019 hot drought, confronting foresters with difficult questions about the choice of more drought- and heat-resistant tree species. We compared the growth dynamics of European beech, sessile oak, Scots pine and Douglas fir in a warmer and a cooler lowland region of Germany to explore the adaptive potential of the four species to climate warming (24 forest stands). The basal area increment (BAI) of the two conifers has declined since about 1990-2010 in both regions, and that of beech in the warmer region, while oak showed positive BAI trends. A 2 °C difference in mean temperatures and a higher frequency of hot days (temperature maximum >30 °C) resulted in greater sensitivity to a negative climatic water balance in beech and oak, and elevated sensitivity to summer heat in Douglas fir and pine. This suggests to include hot days in climate-growth analyses. Negative pointer years were closely related to dry years. Nevertheless, all species showed growth recovery within one to three years. We conclude that all four species are sensitive to a deteriorating climatic water balance and hot temperatures, and have so far not been able to successfully acclimate to the warmer climate, with especially Douglas and beech, but also Scots pine, being vulnerable to a warming and drying climate.


Assuntos
Mudança Climática , Florestas , Árvores , Árvores/crescimento & desenvolvimento , Alemanha , Secas , Fagus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Europa (Continente)
15.
Front Plant Sci ; 15: 1402946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899157

RESUMO

Introduction: Ferns constitute the second largest group of vascular plants. Previous studies have shown that the diversity and composition of fern communities are influenced by resource availability and water stress, among other factors. However, little is known about the influence of these environmental factors on their biotic interactions, especially regarding the relationship between mycorrhizal fungi and ferns. The present study compares the mycorrhizal communities associated with 36 populations of Struthiopteris spicant L. Weiss across Europe and North America. This species exhibits a great tolerance to variations in light, nutrient, and pH conditions, and it can survive with and without mycorrhizae. Methods: With the aim of determining which environmental factors impact the composition and abundance of the root-associated fungal communities in this species, we used an ITS-focused metabarcoding approach to identify the mycorrhizal fungi present and analyzed the influence of climatic and edaphic variables at global and regional scales. Results and discussion: We encountered striking differences in the relative abundance of arbuscular mycorrhizal fungi (AMF) between S. spicant populations at both spatial levels. We recorded a total of 902 fungal ASVs, but only 2- 4% of the total fungal diversity was observed in each individual, revealing that each fern had a unique fungal community. Light availability and the interactive action of pH and soil nitrogen concentration showed a positive influence on AMF relative abundance, explaining 89% of the variance. However, environmental factors could only explain 4- 8% of the variability in AMF community composition, indicating that it might be determined by stochastic processes. These results support the hypothesis that ferns may be more independent of mycorrhization than other plant groups and interact with fungi in a more opportunistic manner.

16.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38662576

RESUMO

To increase the resilience of forests to drought and other hazards, foresters are increasingly planting mixed stands. This requires knowledge about the drought response of tree species in pure and mixed-culture neighborhoods. In addition, drought frequently interacts with continued atmospheric nitrogen (N) deposition. To disentangle these factors for European beech, Norway spruce and Douglas fir, we conducted a replicated 3-factorial sapling growth experiment with three moisture levels, (high, medium, and low), two N levels (high and ambient), and pure and mixed-culture neighborhoods. We measured biomass, stomatal conductance (GS), shoot water potential (at predawn: ΨPD, midday, and turgor loss point: ΨTLP), branch xylem embolism resistance (Ψ50) and minimum epidermal conductance (Gmin). The three species differed most with respect to Gmin (10-fold higher in beech than in the conifers), hydroscape area (larger in beech), and the time elapsed to reach stomatal closure (TΨGS90) and ΨTLP (TTLP; shorter in beech), while Ψ50 and ΨTLP were remarkably similar. Neighborhood (pure vs mixed-culture) influenced biomass production, water status and hydraulic traits, notably GS (higher in Douglas fir, but lower in spruce and beech, in mixtures than pure culture), hydraulic safety margin (smaller for beech in mixtures), and TΨGS90 and TTLP (shorter for spruce in mixture). High N generally increased GS, but no consistent N effects on leaf water status and hydraulic traits were detected, suggesting that neighbor identity had a larger effect on plant water relations than N availability. We conclude that both tree neighborhood and N availability modulate the drought response of beech, spruce, and Douglas fir. Species mixing can alleviate the drought stress of some species, but often by disadvantaging other species. Thus, our study suggests that stabilizing and building resilience of production forests against a drier and warmer climate may depend primarily on the right species choice; species mixing can support the agenda.


Assuntos
Secas , Fagus , Nitrogênio , Picea , Pseudotsuga , Árvores , Água , Picea/fisiologia , Picea/crescimento & desenvolvimento , Fagus/fisiologia , Fagus/crescimento & desenvolvimento , Nitrogênio/metabolismo , Água/metabolismo , Pseudotsuga/fisiologia , Pseudotsuga/crescimento & desenvolvimento , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Resistência à Seca
17.
Ecol Evol ; 13(5): e10122, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37223311

RESUMO

Niche theory fundamentally contributed to the understanding of animal diversity. However, in soil, the diversity of animals seems enigmatic since the soil is a rather homogeneous habitat, and soil animals are often generalist feeders. A new approach to understand soil animal diversity is the use of ecological stoichiometry. The elemental composition of animals may explain their occurrence, distribution, and density. This approach has been used before in soil macrofauna, but this study is the first to investigate soil mesofauna. Using inductively coupled plasma optic emission spectrometry (ICP-OES), we analyzed the concentration of a wide range of elements (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Zn) in 15 soil mite taxa (Oribatida, Mesostigmata) from the litter of two different forest types (beech, spruce) in Central Europe (Germany). Additionally, the concentration of carbon and nitrogen, and their stable isotope ratios (15N/14N, 13C/12C), reflecting their trophic niche, were measured. We hypothesized that (1) stoichiometry differs between mite taxa, (2) stoichiometry of mite taxa occurring in both forest types is not different, and (3) element composition is correlated to trophic level as indicated by 15N/14N ratios. The results showed that stoichiometric niches of soil mite taxa differed considerably indicating that elemental composition is an important niche dimension of soil animal taxa. Further, stoichiometric niches of the studied taxa did not differ significantly between the two forest types. Calcium was negatively correlated with trophic level indicating that taxa incorporating calcium carbonate in their cuticle for defense occupy lower trophic positions in the food web. Furthermore, a positive correlation of phosphorus with trophic level indicated that taxa higher in the food web have higher energetic demand. Overall, the results indicate that ecological stoichiometry of soil animals is a promising tool for understanding their diversity and functioning.

18.
Nat Ecol Evol ; 5(12): 1582-1593, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34545216

RESUMO

Many experiments have shown that biodiversity enhances ecosystem functioning. However, we have little understanding of how environmental heterogeneity shapes the effect of diversity on ecosystem functioning and to what extent this diversity effect is mediated by variation in species richness or species turnover. This knowledge is crucial to scaling up the results of experiments from local to regional scales. Here we quantify the diversity effect and its components-that is, the contributions of variation in species richness and species turnover-for 22 ecosystem functions of microorganisms, plants and animals across 13 major ecosystem types on Mt Kilimanjaro, Tanzania. Environmental heterogeneity across ecosystem types on average increased the diversity effect from explaining 49% to 72% of the variation in ecosystem functions. In contrast to our expectation, the diversity effect was more strongly mediated by variation in species richness than by species turnover. Our findings reveal that environmental heterogeneity strengthens the relationship between biodiversity and ecosystem functioning and that species richness is a stronger driver of ecosystem functioning than species turnover. Based on a broad range of taxa and ecosystem functions in a non-experimental system, these results are in line with predictions from biodiversity experiments and emphasize that conserving biodiversity is essential for maintaining ecosystem functioning.


Assuntos
Biodiversidade , Ecossistema , Animais , Plantas , Tanzânia
19.
Front Plant Sci ; 11: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117363

RESUMO

Fine roots (≤2 mm) consume a large proportion of photosynthates and thus play a key role in the global carbon cycle, but our knowledge about fine root biomass, production, and turnover across environmental gradients is insufficient, especially in tropical ecosystems. Root system studies along elevation transects can produce valuable insights into root trait-environment relationships and may help to explore the evidence for a root economics spectrum (RES) that should represent a trait syndrome with a trade-off between resource acquisitive and conservative root traits. We studied fine root biomass, necromass, production, and mean fine root lifespan (the inverse of fine root turnover) of woody plants in six natural tropical ecosystems (savanna, four tropical mountain forest types, tropical alpine heathland) on the southern slope of Mt. Kilimanjaro (Tanzania) between 900 and 4,500 m a.s.l. Fine root biomass and necromass showed a unimodal pattern along the slope with a peak in the moist upper montane forest (~2,800 m), while fine root production varied little between savanna and upper montane forest to decrease toward the alpine zone. Root:shoot ratio (fine root biomass and production related to aboveground biomass) in the tropical montane forest increased exponentially with elevation, while it decreased with precipitation and soil nitrogen availability (decreasing soil C:N ratio). Mean fine root lifespan was lowest in the ecosystems with pronounced resource limitation (savanna at low elevation, alpine heathland at high elevation) and higher in the moist and cool forest belt (~1,800-3,700 m). The variation in root traits across the elevation gradient fits better with the concept of a multi-dimensional RES, as root tissue density and specific root length showed variable relations to each other, which does not agree with a simple trade-off between acquisitive and conservative root traits. In conclusion, despite large variation in fine root biomass, production, and morphology among the different plant species and ecosystems, a general belowground shift in carbohydrate partitioning is evident from 900 to 4,500 m a.s.l., suggesting that plant growth is increasingly limited by nutrient (probably N) shortage toward higher elevations.

20.
Oecologia ; 161(1): 99-111, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19415337

RESUMO

Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine root systems in 12 temperate deciduous forest stands in Central Europe, we tested the hypotheses that (1) stand fine root biomass increases with tree diversity, and (2) 'below-ground overyielding' of species-rich stands in terms of fine root biomass is the consequence of spatial niche segregation of the roots of different species. The selected stands represent a gradient in tree species diversity on similar bedrock from almost pure beech forests to medium-diverse forests built by beech, ash, and lime, and highly-diverse stands dominated by beech, ash, lime, maple, and hornbeam. We investigated fine root biomass and necromass at 24 profiles per stand and analyzed species differences in fine root morphology by microscopic analysis. Fine root biomass ranged from 440 to 480 g m(-2) in the species-poor to species-rich stands, with 63-77% being concentrated in the upper 20 cm of the soil. In contradiction to our two hypotheses, the differences in tree species diversity affected neither stand fine root biomass nor vertical root distribution patterns. Fine root morphology showed marked distinctions between species, but these root morphological differences did not lead to significant differences in fine root surface area or root tip number on a stand area basis. Moreover, differences in species composition of the stands did not alter fine root morphology of the species. We conclude that 'below-ground overyielding' in terms of fine root biomass does not occur in the species-rich stands, which is most likely caused by the absence of significant spatial segregation of the root systems of these late-successional species.


Assuntos
Biodiversidade , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Árvores/fisiologia , Biomassa , Alemanha , Modelos Lineares , Especificidade da Espécie , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA