RESUMO
BACKGROUND: To assess the diagnostic value of an additional late-phase PET/CT scan after urination as part of 68 Ga-PSMA-11 PET/CT for the restaging of patients with biochemically recurrent prostate cancer (BCR). METHODS: This retrospective trial included patients with BCR following radical prostatectomy, who underwent standard whole-body early-phase PET/CT performed 105 ± 45 min and an additional late-phase PET/CT performed 159 ± 13 min after injection of 68 Ga-PSMA-11. Late-phase PET/CT covered a body volume from below the liver to the upper thighs and was conducted after patients had used the bathroom to empty their urinary bladder. Early- and late-phase images were evaluated regarding lesion count, type, localisation, and SUVmax. Reference standard was histopathology and/or follow-up imaging. RESULTS: Whole-body early-phase PET/CT detected 93 prostate cancer lesions in 33 patients. Late-phase PET/CT detected two additional lesions in two patients, both local recurrences. In total, there were 57 nodal, 28 bone, and 3 lung metastases, and 7 local recurrences. Between early- and late-phase PET/CT, lymph node metastases showed a significant increase of SUVmax from 14.5 ± 11.6 to 21.5 ± 17.6 (p = 0.00007), translating to a factor of + 1.6. Benign lymph nodes in the respective regions showed a significantly lower increase of SUVmax of 1.4 ± 0.5 to 1.7 ± 0.5 (p = 0.0014, factor of + 1.2). Local recurrences and bone metastases had a SUVmax on late-phase PET/CT that was + 1.7 and + 1.1 times higher than the SUVmax on early-phase PET/CT, respectively. CONCLUSION: In patients with BCR following radical prostatectomy, an additional abdomino-pelvic late-phase 68 Ga-PSMA-11 PET/CT scan performed after emptying the urinary bladder may help to detect local recurrences missed on standard whole-body 68 Ga-PSMA-11 PET/CT. Lymph node metastases show a higher SUVmax and a stronger increase of SUVmax than benign lymph nodes on late-phase PET/CT, hence, biphasic 68 Ga-PSMA-11 PET/CT might help to distinguish between malignant and benign nodes. Bone metastases, and especially local recurrences, also demonstrate a metabolic increase over time.
RESUMO
BACKGROUND: Macrophage migration inhibitory factor (MIF) was firstly described in the 1960s as a pleiotropic cytokine affecting a variety of immune cells. Different physiological functions mainly involving inflammatory reactions such as chemokine-like function and regulating systemic stress responses have been reported. OBJECTIVE: In several clinical studies the use of MIF as a biomarker has been investigated promising support for diseases with an inflammatory aspect such as sepsis, systemic infections and autoimmune diseases. This article in detail reviews clinical data and evaluates the function as biomarker focusing on inflammatory and autoimmune diseases. CONCLUSION: Recent studies suggest MIF to be a marker for different inflammatory diseases and might serve as therapeutic target in the future.