Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genet Epidemiol ; 46(5-6): 256-265, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419876

RESUMO

Next-generation sequencing technologies have opened up the possibility to sequence large samples of cases and controls to test for association with rare variants. To limit cost and increase sample sizes, data from controls could be used in multiple studies and might thus be generated on different sequencing platforms. This could pose some problems of comparability between cases and controls due to batch effects that could be confounding factors, leading to false-positive association signals. To limit batch effects and ensure comparability of datasets, stringent quality controls are required. We propose an integrative five-steps pipeline, RAVAQ, that (a) performs a specific three-step quality control taking into account the case-control status to ensure data comparability, (b) selects qualifying variants as defined by the user, and (c) performs rare variant association tests per genomic region. The RAVAQ pipeline is wrapped in an R package. It is user-friendly and flexible in its arguments to adapt to the specificity of each research project. We provide examples showing how RAVAQ improves rare variant association tests. The default RAVAQ quality control outperformed the widely used Variant Quality Score Recalibration method, removing inflation due to spurious signals. RAVAQ is open source and freely available at https://gitlab.com/gmarenne/ravaq.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Estudos de Casos e Controles , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Controle de Qualidade , Software
2.
BMC Bioinformatics ; 23(1): 254, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751014

RESUMO

BACKGROUND: Estimating relatedness is an important step for many genetic study designs. A variety of methods for estimating coefficients of pairwise relatedness from genotype data have been proposed. Both the kinship coefficient [Formula: see text] and the fraternity coefficient [Formula: see text] for all pairs of individuals are of interest. However, when dealing with low-depth sequencing or imputation data, individual level genotypes cannot be confidently called. To ignore such uncertainty is known to result in biased estimates. Accordingly, methods have recently been developed to estimate kinship from uncertain genotypes. RESULTS: We present new method-of-moment estimators of both the coefficients [Formula: see text] and [Formula: see text] calculated directly from genotype likelihoods. We have simulated low-depth genetic data for a sample of individuals with extensive relatedness by using the complex pedigree of the known genetic isolates of Cilento in South Italy. Through this simulation, we explore the behaviour of our estimators, demonstrate their properties, and show advantages over alternative methods. A demonstration of our method is given for a sample of 150 French individuals with down-sampled sequencing data. CONCLUSIONS: We find that our method can provide accurate relatedness estimates whilst holding advantages over existing methods in terms of robustness, independence from external software, and required computation time. The method presented in this paper is referred to as LowKi (Low-depth Kinship) and has been made available in an R package ( https://github.com/genostats/LowKi ).


Assuntos
Modelos Genéticos , Software , Simulação por Computador , Genótipo , Humanos , Linhagem , Sequenciamento Completo do Genoma
3.
Genet Epidemiol ; 45(5): 537-548, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998042

RESUMO

This study sets out to establish the suitability of saliva-based whole-genome sequencing (WGS) through a comparison against blood-based WGS. To fully appraise the observed differences, we developed a novel technique of pseudo-replication. We also investigated the potential of characterizing individual salivary microbiomes from non-human DNA fragments found in saliva. We observed that the majority of discordant genotype calls between blood and saliva fell into known regions of the human genome that are typically sequenced with low confidence; and could be identified by quality control measures. Pseudo-replication demonstrated that the levels of discordance between blood- and saliva-derived WGS data were entirely similar to what one would expect between technical replicates if an individual's blood or saliva had been sequenced twice. Finally, we successfully sequenced salivary microbiomes in parallel to human genomes as demonstrated by a comparison against the Human Microbiome Project.


Assuntos
Microbiota , Saliva , Genoma Humano , Genótipo , Humanos , Microbiota/genética , Sequenciamento Completo do Genoma
4.
Int J Cancer ; 148(12): 2935-2946, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33527407

RESUMO

Incidence of differentiated thyroid carcinoma (DTC) varies considerably between ethnic groups, with particularly high incidence rates in Pacific Islanders. DTC is one of the cancers with the highest familial risk suggesting a major role of genetic risk factors, but only few susceptibility loci were identified so far. In order to assess the contribution of known DTC susceptibility loci and to identify new ones, we conducted a multiethnic genome-wide association study (GWAS) in individuals of European ancestry and of Oceanian ancestry from Pacific Islands. Our study included 1554 cases/1973 controls of European ancestry and 301 cases/348 controls of Oceanian ancestry from seven population-based case-control studies participating to the EPITHYR consortium. All participants were genotyped using the OncoArray-500K Beadchip (Illumina). We confirmed the association with the known DTC susceptibility loci at 2q35, 8p12, 9q22.33 and 14q13.3 in the European ancestry population and suggested two novel signals at 1p31.3 and 16q23.2, which were associated with thyroid-stimulating hormone levels in previous GWAS. We additionally replicated an association with 5p15.33 reported previously in Chinese and European populations. Except at 1p31.3, all associations were in the same direction in the population of Oceanian ancestry. We also observed that the frequencies of risk alleles at 2q35, 5p15.33 and 16q23.2 were significantly higher in Oceanians than in Europeans. However, additional GWAS and epidemiological studies in Oceanian populations are needed to fully understand the highest incidence observed in these populations.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Glândula Tireoide/etnologia , População Branca/genética , Adulto , Idoso , Estudos de Casos e Controles , Cromossomos Humanos/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Ilhas do Pacífico/etnologia , Neoplasias da Glândula Tireoide/genética
5.
Sci Rep ; 14(1): 370, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172507

RESUMO

Imputation servers offer the exclusive possibility to harness the largest public reference panels which have been shown to deliver very high precision in the imputation of European genomes. Many studies have nonetheless stressed the importance of 'study specific panels' (SSPs) as an alternative and have shown the benefits of combining public reference panels with SSPs. But such combined approaches are not attainable when using external imputation servers. To investigate how to confront this challenge, we imputed 550 French individuals using either the University of Michigan imputation server with the Haplotype Reference Consortium (HRC) panel or an in-house SSP of 850 whole-genome sequenced French individuals. With approximate geo-localization of both our target and SSP individuals we are able to pinpoint different scenarios where SSP-based imputation would be preferred over server-based imputation or vice-versa. This is achieved by showing to a high degree of resolution the importance of the proximity of the reference panel to target individuals; with a focus on the clear added value of SSPs for estimating haplotype phase and for the imputation of rare variants (minor allele-frequency below 0.01). Such benefits were most evident for individuals from the same geographical regions in France as the SSP individuals. Overall, only 42.3% of all 125,442 variants evaluated were better imputed with an SSP from France compared to an external reference panel, however this rises to 58.1% for individuals from geographic regions well covered by the SSP. By investigating haplotype sharing and population fine-structure in France, we show the importance of including SSP haplotypes for imputation but also that they should ideally be combined with large public panels. In the absence of the unattainable results from a combined panel of the HRC and our French SSP, we put forward a pragmatic solution where server-based and SSP-based imputation outcomes can be combined based on comparing posterior genotype probabilities. We show that such an approach can give a level of imputation accuracy in excess of what could be achieved with either strategy alone. The results presented provide detailed insights into the accuracy of imputation that should be expected from different strategies for European populations.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Humanos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Frequência do Gene , Haplótipos , Polimorfismo de Nucleotídeo Único
6.
Genes (Basel) ; 14(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36833337

RESUMO

Genotype imputation is widely used to enrich genetic datasets. The operation relies on panels of known reference haplotypes, typically with whole-genome sequencing data. How to choose a reference panel has been widely studied and it is essential to have a panel that is well matched to the individuals who require missing genotype imputation. However, it is broadly accepted that such an imputation panel will have an enhanced performance with the inclusion of diversity (haplotypes from many different populations). We investigate this observation by examining, in fine detail, exactly which reference haplotypes are contributing at different regions of the genome. This is achieved using a novel method of inserting synthetic genetic variation into the reference panel in order to track the performance of leading imputation algorithms. We show that while diversity may globally improve imputation accuracy, there can be occasions where incorrect genotypes are imputed following the inclusion of more diverse haplotypes in the reference panel. We, however, demonstrate a technique for retaining and benefitting from the diversity in the reference panel whilst avoiding the occasional adverse effects on imputation accuracy. What is more, our results more clearly elucidate the role of diversity in a reference panel than has been shown in previous studies.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Frequência do Gene , Estudo de Associação Genômica Ampla/métodos , Genótipo , Software
7.
J Pers Med ; 12(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36013215

RESUMO

Polygenic risk scores (PRSs) are being constructed for many diseases and are presented today as a promising avenue in the field of human genetics. These scores aim at predicting the risk of developing a disease by leveraging the many genome-wide association studies (GWAS) conducted during the two last decades. Important investments are being made to improve score estimates by increasing GWAS sample sizes, by developing more sophisticated methods, and by proposing different corrections for potential biases. PRSs have entered the market with direct-to-consumer companies proposing to compute them from saliva samples and even recently to help parents select the healthiest embryos. In this paper, we recall how PRSs arose and question the credit they are given by revisiting underlying assumptions in light of the history of human genetics and by comparing them with estimated breeding values (EBVs) used for selection in livestock.

8.
Genes (Basel) ; 12(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806082

RESUMO

BACKGROUND: Excessive alcohol consumption has long been known to be the primary cause of chronic pancreatitis (CP) but genetic risk factors have been increasingly identified over the past 25 years. The scale and scope of gene-alcohol interactions in CP nevertheless remain unclear. METHODS: All studies that had obtained genetic variant data concurrently on alcoholic CP (ACP) patients, non-ACP (NACP) patients and normal controls were collated. Employing normal controls as a common baseline, paired ORACP and ORNACP (odds ratios associated with ACP and NACP, respectively) values were calculated and used to assess gene-alcohol interactions. RESULTS: Thirteen variants involving PRSS1, SPINK1, CTRC, CLDN2, CPA1, CEL and CTRB1-CTRB2, and varying from very rare to common, were collated. Seven variants had an ORACP > ORNACP, which was regarded as an immediate indicator of gene-alcohol interactions in CP. Variants with an ORACP < ORNACP were also found to interact with alcohol consumption by virtue of their impact on age at first pancreatitis symptoms in ACP. CONCLUSIONS: This study revealed evidence for extensive gene-alcohol interactions in CP. Our findings lend support to the hypothesis that alcohol affects the expression of genetically determined CP and highlight a predominant role of weak-effect variants in the development of ACP.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Marcadores Genéticos , Predisposição Genética para Doença , Mutação , Pancreatite Alcoólica/patologia , Humanos , Pancreatite Alcoólica/etiologia , Pancreatite Alcoólica/metabolismo
9.
Genes (Basel) ; 11(11)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202925

RESUMO

The association between a common PRSS1-PRSS2 haplotype and alcoholic chronic pancreatitis (ACP), which was revealed by the first genome-wide association study of chronic pancreatitis (CP), has been consistently replicated. However, the association with non-ACP (NACP) has been controversial. Herein, we sought to clarify this basic issue by means of an allele-based meta-analysis of currently available studies. We then used studies informative for genotype distribution to explore the biological mechanisms underlying the association data and to test for gene-environment interaction between the risk haplotype and alcohol consumption by means of a re-analysis. A literature search was conducted to identify eligible studies. A meta-analysis was performed using the Review Manager software. The association between the risk genotypes and NACP or ACP was tested for the best-fitting genetic model. Gene-environment interaction was estimated by both case-only and multinomial approaches. Five and eight studies were employed for the meta-analysis of ACP and NACP findings, respectively. The risk allele was significantly associated with both ACP (pooled odds ratio (OR) 1.67, 95% confidence interval (CI) 1.56-1.78; p < 0.00001) and NACP (pooled OR 1.28, 95% CI 1.17-1.40; p < 0.00001). Consistent with a dosage effect of the risk allele on PRSS1/PRSS2 mRNA expression in human pancreatic tissue, both ACP and NACP association data were best explained by an additive genetic model. Finally, the risk haplotype was found to interact synergistically with alcohol consumption.


Assuntos
Pancreatite Alcoólica/genética , Pancreatite Crônica/genética , Tripsina/genética , Tripsinogênio/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/genética , Expressão Gênica , Frequência do Gene , Interação Gene-Ambiente , Haplótipos , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
10.
Sci Rep ; 8(1): 18048, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575761

RESUMO

Inconsistencies between published estimates of dominance heritability between studies of human genetic isolates and human outbred populations incite investigation into whether such differences result from particular trait architectures or specific population structures. We analyse simulated datasets, characteristic of genetic isolates and of unrelated individuals, before analysing the isolate of Cilento for various commonly studied traits. We show the strengths of using genetic relationship matrices for variance decomposition over identity-by-descent based methods in a population isolate and that heritability estimates in isolates will avoid the downward biases that may occur in studies of samples of unrelated individuals; irrespective of the simulated distribution of causal variants. Yet, we also show that precise estimates of dominance in isolates are demonstrably problematic in the presence of shared environmental effects and such effects should be accounted for. Nevertheless, we demonstrate how studying isolates can help determine the existence or non-existence of dominance for complex traits, and we find strong indications of non-zero dominance for low-density lipoprotein level in Cilento. Finally, we recommend future study designs to analyse trait variance decomposition from ensemble data across multiple population isolates.


Assuntos
Herança Multifatorial/genética , Característica Quantitativa Herdável , Isolamento Reprodutivo , Genes Dominantes/fisiologia , Variação Genética , Humanos , Modelos Genéticos , Modelos Teóricos , Fenótipo , Dinâmica Populacional , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA