Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 22(8): e52507, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309183

RESUMO

Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.


Assuntos
Dobramento de Proteína , Proteostase , Sobrevivência Celular , Proteoma/metabolismo , Estresse Mecânico
2.
J Mol Cell Cardiol ; 152: 95-104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290769

RESUMO

The adult mammalian heart consists of mononuclear and binuclear cardiomyocytes (CMs) with various ploidies. However, it remains unclear whether a variation in ploidy or number of nuclei is associated with distinct functions and injury responses in CMs, including regeneration. Therefore, we investigated transcriptomes and cellular as well as nuclear features of mononucleated and binucleated CMs in adult mouse hearts with and without injury. To be able to identify the role of ploidy we analyzed control and failing human ventricular CMs because human CMs show a larger and disease-sensitive degree of polyploidization. Using transgenic Myh6-H2BmCh to identify mononucleated and binucleated mouse CMs, we found that cellular volume and RNA content were similar in both. On average nuclei of mononuclear CMs showed a 2-fold higher ploidy, as compared to binuclear CMs indicating that most mononuclear CMs are tetraploid. After myocardial infarction mononucleated and binucleated CMs in the border zone of the lesion responded with hypertrophy and corresponding changes in gene expression, as well as a low level of induction of cell cycle gene expression. Human CMs allowed us to study a wide range of polyploidy spanning from 2n to 16n. Notably, basal as well as pathological gene expression signatures and programs in failing CMs proved to be independent of ploidy. In summary, gene expression profiles were induced in proximity to injury, but independent of number of nuclei or ploidy levels in CMs.


Assuntos
Adaptação Fisiológica , Núcleo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Ploidias , Regeneração , Animais , Humanos , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , RNA-Seq
3.
Circ Res ; 123(9): 1039-1052, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355161

RESUMO

RATIONALE: New strategies in the field of cardiac regeneration are directed at identifying proliferation-inducing substances to induce regrowth of myocardium. Current screening assays utilize neonatal cardiomyocytes and markers for cytokinesis, such as Aurora B-kinase. However, detection of cardiomyocyte division is complicated because of cell cycle variants, in particular, binucleation. OBJECTIVE: To analyze the process of cardiomyocyte binucleation to identify definitive discriminators for cell cycle variants and authentic cardiomyocyte division. METHODS AND RESULTS: Herein, we demonstrate by direct visualization of the contractile ring and midbody in Myh6 (myosin, heavy chain 6)-eGFP (enhanced green fluorescent protein)-anillin transgenic mice that cardiomyocyte binucleation starts by formation of a contractile ring. This is followed by irregular positioning of the midbody and movement of the 2 nuclei into close proximity to each other. In addition, the widespread used marker Aurora B-kinase was found to also label binucleating cardiomyocytes, complicating the interpretation of existing screening assays. Instead, atypical midbody positioning and the distance of daughter nuclei on karyokinesis are bona fide markers for cardiomyocyte binucleation enabling to unequivocally discern such events from cardiomyocyte division in vitro and in vivo. CONCLUSIONS: The 2 criteria provide a new method for identifying cardiomyocyte division and should be considered in future studies investigating cardiomyocyte turnover and regeneration after injury, in particular in the postnatal heart to prevent the assignment of false positive proliferation events.


Assuntos
Divisão do Núcleo Celular , Núcleo Celular/fisiologia , Proliferação de Células , Miócitos Cardíacos/fisiologia , Animais , Aurora Quinase B/metabolismo , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Regeneração , Fatores de Tempo
4.
Circ Res ; 123(5): 550-563, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29930145

RESUMO

RATIONALE: Structural and electrophysiological remodeling of the atria are recognized consequences of sustained atrial arrhythmias, such as atrial fibrillation. The identification of underlying key molecules and signaling pathways has been challenging because of the changing cell type composition during structural remodeling of the atria. OBJECTIVE: Thus, the aims of our study were (1) to search for transcription factors and downstream target genes, which are involved in atrial structural remodeling, (2) to characterize the significance of the transcription factor ETV1 (E twenty-six variant 1) in atrial remodeling and arrhythmia, and (3) to identify ETV1-dependent gene regulatory networks in atrial cardiac myocytes. METHODS AND RESULTS: The transcription factor ETV1 was significantly upregulated in atrial tissue from patients with permanent atrial fibrillation. Mice with cardiac myocyte-specific overexpression of ETV1 under control of the myosin heavy chain promoter developed atrial dilatation, fibrosis, thrombosis, and arrhythmia. Cardiac myocyte-specific ablation of ETV1 in mice did not alter cardiac structure and function at baseline. Treatment with Ang II (angiotensin II) for 2 weeks elicited atrial remodeling and fibrosis in control, but not in ETV1-deficient mice. To identify ETV1-regulated genes, cardiac myocytes were isolated and purified from mouse atrial tissue. Active cis-regulatory elements in mouse atrial cardiac myocytes were identified by chromatin accessibility (assay for transposase-accessible chromatin sequencing) and the active chromatin modification H3K27ac (chromatin immunoprecipitation sequencing). One hundred seventy-eight genes regulated by Ang II in an ETV1-dependent manner were associated with active cis-regulatory elements containing ETV1-binding sites. Various genes involved in Ca2+ handling or gap junction formation ( Ryr2, Jph2, Gja5), potassium channels ( Kcnh2, Kcnk3), and genes implicated in atrial fibrillation ( Tbx5) were part of this ETV1-driven gene regulatory network. The atrial ETV1-dependent transcriptome in mice showed a significant overlap with the human atrial proteome of patients with permanent atrial fibrillation. CONCLUSIONS: This study identifies ETV1 as an important component in the pathophysiology of atrial remodeling associated with atrial arrhythmias.


Assuntos
Arritmias Cardíacas/genética , Remodelamento Atrial , Proteínas de Ligação a DNA/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , Conexinas/genética , Conexinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Curr Cardiol Rep ; 22(6): 39, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430578

RESUMO

PURPOSE OF REVIEW: The typical remodeling process after cardiac injury is scarring and compensatory hypertrophy. The limited regeneration potential of the adult heart is thought to be due to the post-mitotic status of postnatal cardiomyocytes, which are mostly binucleated and/or polyploid. Nevertheless, there is evidence for cardiomyocyte turnover in the adult heart. The purpose of this review is to describe the recent findings regarding the proliferative potential of mononuclear cardiomyocytes and to evaluate their function in cardiac turnover and disease. RECENT FINDINGS: There is overwhelming evidence from carbon-dating in humans and multi-isotope imaging mass spectrometry in mice that there is a very low but detectable level of turnover of cardiomyocytes in the heart. The source of this renewal is not clear, but recent evidence points to a population of mononuclear, diploid cardiomyocytes that are still capable of authentic cell division. Controversy arises when their role in cardiac repair is considered, as some studies claim that they contribute to repair by cell division while other studies do not find evidence for hyperplasia but hypertrophy. Stimulation of the mononuclear cardiomyocyte population has been proposed as a therapeutic strategy in cardiac disease. The studies reviewed here agree on the existence of a low annual cardiomyocyte turnover rate which can be attributed to the proliferation of mononuclear cardiomyocytes. Potential roles of mononucleated cardiomyocytes in cardiac repair after injury are discussed.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Proliferação de Células , Cardiopatias , Humanos , Camundongos , Regeneração/fisiologia
7.
Circ Res ; 121(12): 1370-1378, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28928113

RESUMO

RATIONALE: Pregnancy profoundly alters maternal physiology. The heart hypertrophies during pregnancy, but its metabolic adaptations, are not well understood. OBJECTIVE: To determine the mechanisms underlying cardiac substrate use during pregnancy. METHODS AND RESULTS: We use here 13C glucose, 13C lactate, and 13C fatty acid tracing analyses to show that hearts in late pregnant mice increase fatty acid uptake and oxidation into the tricarboxylic acid cycle, while reducing glucose and lactate oxidation. Mitochondrial quantity, morphology, and function do not seem altered. Insulin signaling seems intact, and the abundance and localization of the major fatty acid and glucose transporters, CD36 (cluster of differentiation 36) and GLUT4 (glucose transporter type 4), are also unchanged. Rather, we find that the pregnancy hormone progesterone induces PDK4 (pyruvate dehydrogenase kinase 4) in cardiomyocytes and that elevated PDK4 levels in late pregnancy lead to inhibition of PDH (pyruvate dehydrogenase) and pyruvate flux into the tricarboxylic acid cycle. Blocking PDK4 reverses the metabolic changes seen in hearts in late pregnancy. CONCLUSIONS: Taken together, these data indicate that the hormonal environment of late pregnancy promotes metabolic remodeling in the heart at the level of PDH, rather than at the level of insulin signaling.


Assuntos
Miocárdio/metabolismo , Gravidez/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Pirúvico/metabolismo , Animais , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Progesterona/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
8.
Pflugers Arch ; 470(2): 241-248, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28849267

RESUMO

Cardiovascular disease and in particular, heart failure are still main causes of death; therefore, novel therapeutic approaches are urgently needed. Loss of contractile substrate in the heart and limited regenerative capacity of cardiomyocytes are mainly responsible for the poor cardiovascular outcome. This is related to the postmitotic state of differentiated cardiomyocytes, which is partly due to their polyploid nature caused by cell cycle variants. As such, the cardiomyocyte cell cycle is a key player, and its manipulation could be a promising strategy for enhancing the plasticity of the heart by inducing cardiomyocyte proliferation. This review focuses on the cardiac cell cycle and its variants during postnatal growth, the different regenerative responses of the heart in dependance of the developmental stage and on manipulations of the cell cycle. Because a therapeutic goal is to induce authentic cell division in cardiomyocytes, recent experimental approaches following this strategy are also discussed.


Assuntos
Ciclo Celular , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Regeneração , Animais , Humanos , Miócitos Cardíacos/citologia
9.
Angiogenesis ; 21(2): 349-361, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29417260

RESUMO

Endothelial cell proliferation is a key process during vascular growth but its kinetics could only be assessed in vitro or ex vivo so far. To enable the monitoring and quantification of cell cycle kinetics in vivo, we have generated transgenic mice expressing an eGFP-anillin construct under control of the endothelial-specific Flt-1 promoter. This construct labels the nuclei of endothelial cells in late G1, S and G2 phase and changes its localization during the different stages of M phase, thereby enabling the monitoring of EC proliferation and cytokinesis. In Flt-1/eGFP-anillin mice, we found eGFP+ signals specifically in Ki67+/PECAM+ endothelial cells during vascular development. Quantification using this cell cycle reporter in embryos revealed a decline in endothelial cell proliferation between E9.5 to E12.5. By time-lapse microscopy, we determined the length of different cell cycle phases in embryonic endothelial cells in vivo and found a M phase duration of about 80 min with 2/3 covering karyokinesis and 1/3 cytokinesis. Thus, we have generated a versatile transgenic system for the accurate assessment of endothelial cell cycle dynamics in vitro and in vivo.


Assuntos
Ciclo Celular , Proteínas Contráteis/metabolismo , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas Contráteis/genética , Embrião de Mamíferos/citologia , Células Endoteliais/citologia , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
10.
Circ Res ; 117(5): 413-23, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26105955

RESUMO

RATIONALE: Epigenetic mechanisms are crucial for cell identity and transcriptional control. The heart consists of different cell types, including cardiac myocytes, endothelial cells, fibroblasts, and others. Therefore, cell type-specific analysis is needed to gain mechanistic insight into the regulation of gene expression in cardiac myocytes. Although cytosolic mRNA represents steady-state levels, nuclear mRNA more closely reflects transcriptional activity. To unravel epigenetic mechanisms of transcriptional control, cell type-specific analysis of nuclear mRNA and epigenetic modifications is crucial. OBJECTIVE: The aim was to purify cardiac myocyte nuclei from hearts of different species by magnetic- or fluorescent-assisted sorting and to determine the nuclear and cellular RNA expression profiles and epigenetic marks in a cardiac myocyte-specific manner. METHODS AND RESULTS: Frozen cardiac tissue samples were used to isolate cardiac myocyte nuclei. High sorting purity was confirmed for cardiac myocyte nuclei isolated from mice, rats, and humans. Deep sequencing of nuclear RNA revealed a major fraction of nascent, unspliced RNA in contrast to results obtained from purified cardiac myocytes. Cardiac myocyte nuclear and cellular RNA expression profiles showed differences, especially for metabolic genes. Genome-wide maps of the transcriptional elongation mark H3K36me3 were generated by chromatin-immunoprecipitation. Transcriptome and epigenetic data confirmed the high degree of cardiac myocyte-specificity of our protocol. An integrative analysis of nuclear mRNA and histone mark occurrence indicated a major impact of the chromatin state on transcriptional activity in cardiac myocytes. CONCLUSIONS: This study establishes cardiac myocyte-specific sorting of nuclei as a universal method to investigate epigenetic and transcriptional processes in cardiac myocytes of different origins. These data sets provide novel insight into cardiac myocyte transcription.


Assuntos
Epigênese Genética/fisiologia , Miócitos Cardíacos/fisiologia , Transcrição Gênica/fisiologia , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Ratos Wistar , Especificidade da Espécie
11.
Development ; 140(5): 987-95, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404105

RESUMO

Integrin linked kinase (ILK) connects the ILK-Pinch-Parvin complex with integrin adhesion sites. Because of the functional relevance of integrin-linked signaling for endothelial cell (EC) biology, we have explored this pathway in Ilk(-/-) embryonic stem (ES) cells differentiated into ECs and vessel-like structures. We have focused in particular on the mechanistic relevance of ILK-Pinch-Parvin complex-related signaling for EC development and tube formation. Our analysis revealed that the formation of vessel-like structures was strongly reduced in Ilk(-/-) ES cells and that this phenotype could be rescued by re-expression of ILK in ES cells. ECs were MACS sorted from wild-type (WT) and Ilk(-/-) ES cells and functional analysis using intracellular calcium imaging as the read-out yielded a complete lack of vascular endothelial growth factor- and epidermal growth factor-dependent responses. The possibility of a caveolin 1-related defect was investigated by transfecting WT and Ilk(-/-) ECs with a caveolin 1-EGFP fusion protein. Time-lapse microscopy showed that the prominent phenotype is due to altered dynamics of caveolin 1 and to a lack of positioning of caveolin 1 in the vicinity of the plasma membrane and that it is rescued by re-expressing ILK in the Ilk(-/-) ES cells. We also found that the defect is caused by the perturbed organization of microtubules and cortical actin filaments. Thus, ILK is required as a scaffold to allow actin-microtubule interactions and correct positioning of caveolin 1 close to the plasma membrane. This is crucial for signaling compartmentalization in ECs and explains the key role of ILK for EC development and function.


Assuntos
Caveolina 1/metabolismo , Células Endoteliais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais/fisiologia , Deleção de Genes , Camundongos , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Distribuição Tecidual/genética
12.
Basic Res Cardiol ; 110(3): 33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25925989

RESUMO

Even though the mammalian heart has been investigated for many years, there are still uncertainties in the fields of cardiac cell biology and regeneration with regard to exact fractions of cardiomyocytes (CMs) at different developmental stages, their plasticity after cardiac lesion and also their basal turnover rate. A main shortcoming is the accurate identification of CM and the demonstration of CM division. Therefore, an in vivo model taking advantage of a live reporter-based identification of CM nuclei and their cell cycle status is needed. In this technical report, we describe the generation and characterization of embryonic stem cells and transgenic mice expressing a fusion protein of human histone 2B and the red fluorescence protein mCherry under control of the CM specific αMHC promoter. This fluorescence label allows unequivocal identification and quantitation of CM nuclei and nuclearity in isolated cells and native tissue slices. In ventricles of adults, we determined a fraction of <20 % CMs and binucleation of 77-90 %, while in atria a CM fraction of 30 % and a binucleation index of 14 % were found. We combined this transgenic system with the CAG-eGFP-anillin transgene, which identifies cell division and established a novel screening assay for cell cycle-modifying substances in isolated, postnatal CMs. Our transgenic live reporter-based system enables reliable identification of CM nuclei and determination of CM fractions and nuclearity in heart tissue. In combination with CAG-eGFP-anillin-mice, the cell cycle status of CMs can be monitored in detail enabling screening for proliferation-inducing substances in vitro and in vivo.


Assuntos
Núcleo Celular/metabolismo , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Imagem Óptica/métodos , Animais , Ciclo Celular/fisiologia , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Coração/embriologia , Coração/crescimento & desenvolvimento , Histonas , Humanos , Proteínas Luminescentes , Camundongos , Proteínas Recombinantes de Fusão , Transfecção , Proteína Vermelha Fluorescente
13.
Stem Cells ; 32(7): 1701-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24585704

RESUMO

Ischemic heart disease is the number one cause of morbidity and mortality in the developed world due to the inability of the heart to replace lost myocytes. The cause of postinfarction myogenic failure has been a subject of intense scientific investigation and much controversy. Recent data indicate a brief perinatal developmental window exists during which postinfarction myogenesis, and substantial heart regeneration, occurs. By contrast, repair of an equivalent injury of the adult heart results in prominent revascularization without myogenesis. Here, we review recent experiments on neonatal postinjury myogenesis, examine the mechanistic hypotheses of dedifferentiation and precursor expansion, and discuss experiments indicating that postinfarction revascularization derives primarily from cardiac vascular precursors. These data have profound consequences for the understanding of human heart repair, as they address the long standing question as to whether human postinfarction myogenic failure is due to the loss of precursors existent at the neonatal stage or to a context-dependent inhibition of these precursors within the infarct, and suggest strategies for the recapitulation of neonatal myogenic capacity and the augmentation of revascularization.


Assuntos
Células-Tronco Adultas/fisiologia , Coração/fisiopatologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Desdiferenciação Celular , Vasos Coronários/fisiopatologia , Cardiopatias/fisiopatologia , Humanos , Neovascularização Fisiológica , Regeneração
14.
Phys Rev Lett ; 114(9): 095002, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793820

RESUMO

Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the antiparallel configuration, the inflow speed increases with the upstream magnetization parameter σ and approaches the speed of light when σ>O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains ∼0.1 in both the nonrelativistic and relativistic limits.

15.
Proc Natl Acad Sci U S A ; 109(33): 13380-5, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847442

RESUMO

We examined the myogenic response to infarction in neonatal and adult mice to determine the role of c-kit(+) cardiovascular precursor cells (CPC) that are known to be present in early heart development. Infarction of postnatal day 1-3 c-kit(BAC)-EGFP mouse hearts induced the localized expansion of (c-kit)EGFP(+) cells within the infarct, expression of the c-kit and Nkx2.5 mRNA, myogenesis, and partial regeneration of the infarction, with (c-kit)EGFP(+) cells adopting myogenic and vascular fates. Conversely, infarction of adult mice resulted in a modest induction of (c-kit)EGFP(+) cells within the infarct, which did not express Nkx2.5 or undergo myogenic differentiation, but adopted a vascular fate within the infarction, indicating a lack of authentic CPC. Explantation of infarcted neonatal and adult heart tissue to scid mice, and adoptive transfer of labeled bone marrow, confirmed the cardiac source of myogenic (neonate) and angiogenic (neonate and adult) cells. FACS-purified (c-kit)EGFP(+)/(αMHC)mCherry(-) (noncardiac) cells from microdissected infarcts within 6 h of infarction underwent cardiac differentiation, forming spontaneously beating myocytes in vitro; cre/LoxP fate mapping identified a noncardiac population of (c-kit)EGFP(+) myocytes within infarctions, indicating that the induction of undifferentiated precursors contributes to localized myogenesis. Thus, adult postinfarct myogenic failure is likely not due to a context-dependent restriction of precursor differentiation, and c-kit induction following injury of the adult heart does not define precursor status.


Assuntos
Envelhecimento/patologia , Desenvolvimento Muscular , Infarto do Miocárdio/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células-Tronco/citologia , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Regeneração , Células-Tronco/metabolismo
16.
JCI Insight ; 9(5)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319719

RESUMO

Cauterization of the root of the left coronary artery (LCA) in the neonatal heart on postnatal day 1 (P1) resulted in large, reproducible lesions of the left ventricle (LV), and an attendant marked adaptive response in the right ventricle (RV). The response of both chambers to LV myocardial infarction involved enhanced cardiomyocyte (CM) division and binucleation, as well as LV revascularization, leading to restored heart function within 7 days post surgery (7 dps). By contrast, infarction of P3 mice resulted in cardiac scarring without a significant regenerative and adaptive response of the LV and the RV, leading to subsequent heart failure and death within 7 dps. The prominent RV myocyte expansion in P1 mice involved an acute increase in pulmonary arterial pressure and a unique gene regulatory response, leading to an increase in RV mass and preserved heart function. Thus, distinct adaptive mechanisms in the RV, such as CM proliferation and RV expansion, enable marked cardiac regeneration of the infarcted LV at P1 and full functional recovery.


Assuntos
Ventrículos do Coração , Infarto do Miocárdio , Animais , Camundongos , Ventrículos do Coração/patologia , Miócitos Cardíacos/patologia , Animais Recém-Nascidos , Infarto do Miocárdio/patologia , Regeneração
17.
Cardiovasc Res ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916487

RESUMO

AIMS: Endothelial cell (EC) dysfunction plays a key role in the initiation and progression of cardiovascular disease. However, studying these disorders in ECs from patients is challenging, hence the use of human induced pluripotent stem cells (hiPSCs) and their in vitro differentiation into ECs represents a very promising approach. Still, the generation of hiPSC-derived ECs (hECs) remains demanding as a cocktail of growth factors and an intermediate purification step are required for hEC enrichment. Therefore, we probed the utility of a forward programming approach using transgenic hiPSC lines. METHODS AND RESULTS: We have used the transgenic hiPSC line PGP1 ETV2 iso2 to explore the in vitro differentiation of hECs via doxycycline-dependent induction of the transcription factor ETV2 and compared these with a standard differentiation protocol for hECs using non-transgenic control hiPSCs. The transgenic hECs were highly enriched without an intermediate purification step and expressed - as non-transgenic hECs and HUVECs - characteristic EC markers. The viability and yield of transgenic hECs were strongly improved by applying EC growth medium during differentiation. This protocol was successfully applied in two more transgenic hiPSC lines yielding reproducible results with low line-to-line variability. Transgenic hECs displayed typical functional properties, such as tube formation and LDL uptake, and a more mature phenotype than non-transgenic hECs. Transgenic hiPSCs preferentially differentiated into the arterial lineage, this was further enhanced by adding a high VEGF concentration to the medium. We also demonstrate that complexing lentivirus with magnetic nanoparticles and application of a magnetic field enables efficient transduction of transgenic hECs. CONCLUSIONS: We have established a highly efficient, cost-effective, and reproducible differentiation protocol for the generation of functional hECs via forward programming. The transgenic hECs can be genetically modified and are a powerful tool for disease modelling, tissue engineering, and translational purposes.

18.
Nat Methods ; 7(11): 897-900, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20881965

RESUMO

Electrical stimulation is the standard technique for exploring electrical behavior of heart muscle, but this approach has considerable technical limitations. Here we report expression of the light-activated cation channel channelrhodopsin-2 for light-induced stimulation of heart muscle in vitro and in mice. This method enabled precise localized stimulation and constant prolonged depolarization of cardiomyocytes and cardiac tissue resulting in alterations of pacemaking, Ca(2+) homeostasis, electrical coupling and arrhythmogenic spontaneous extrabeats.


Assuntos
Miócitos Cardíacos/fisiologia , Animais , Cálcio/metabolismo , Channelrhodopsins , Estimulação Elétrica , Eletrocardiografia , Camundongos , Marca-Passo Artificial
19.
Taxon ; 62(4): 701-712, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25821249

RESUMO

Almost all systematic treatments agree that Calla is a puzzling case, being a highly autapomorphic taxon with obscure relationships. In molecular-based classifications the variable placements of Calla within Aroideae conflict strongly with those in morphologically and anatomically based systematic classifications, which treat the genus as a subfamily (Calloideae) of its own. We studied the pollen morphology and ultrastructure of Calla by light and electron microscopy, and mapped the relevant pollen characters as well as some flower characters to the proposed placements of Calla within the Araceae as indicated in the various molecular phylogenies. Calla pollen is extraordinary within the entire Araceae. Pollen grains are small, and basically disulcate or with a ring-like aperture. The ornamentation is psilate to perforate, and the pollen wall consists of a sporopolleninous tectate-columellate exine. These pollen characters are shared with those of several earlier-diverging aroid taxa, especially with those of subfamily Zamioculcadoideae, whereas pollen characters in members of subfamily Aroideae deviate significantly. These findings are in accordance with other floral characters. Therefore, we propose that Calla is best placed in a transition zone between either subfamily Zamioculcadoideae (Stylochaeton clade) and subfamily Aroideae (Aroideae clade) or between subfamily Zamioculcadoideae (Stylochaeton clade) and subfamily Lasioideae.

20.
Theranostics ; 13(3): 1150-1164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793861

RESUMO

Background: The regenerative potential of the heart after injury is limited. Therefore, cell replacement strategies have been developed. However, the engraftment of transplanted cells in the myocardium is very inefficient. In addition, the use of heterogeneous cell populations precludes the reproducibility of the outcome. Methods: To address both issues, in this proof of principle study, we applied magnetic microbeads for combined isolation of eGFP+ embryonic cardiac endothelial cells (CECs) by antigen-specific magnet-associated cell sorting (MACS) and improved engraftment of these cells in myocardial infarction by magnetic fields. Results: MACS provided CECs of high purity decorated with magnetic microbeads. In vitro experiments revealed that the angiogenic potential of microbead-labeled CECs was preserved and the magnetic moment of the cells was strong enough for site-specific positioning by a magnetic field. After myocardial infarction in mice, intramyocardial CEC injection in the presence of a magnet resulted in a strong improvement of cell engraftment and eGFP+ vascular network formation in the hearts. Hemodynamic and morphometric analysis demonstrated augmented heart function and reduced infarct size only when a magnetic field was applied. Conclusion: Thus, the combined use of magnetic microbeads for cell isolation and enhanced cell engraftment in the presence of a magnetic field is a powerful approach to improve cell transplantation strategies in the heart.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Camundongos , Animais , Microesferas , Reprodutibilidade dos Testes , Miocárdio , Infarto do Miocárdio/terapia , Separação Celular , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA