Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424598

RESUMO

BACKGROUND: The choroid plexus functions as the blood-cerebrospinal fluid (CSF) barrier, plays an important role in CSF production and circulation, and has gained increased attention in light of the recent elucidation of CSF circulation dysfunction in neurodegenerative conditions. However, methods for routinely quantifying choroid plexus volume are suboptimal and require technical improvements and validation. Here, we propose three deep learning models that can segment the choroid plexus from commonly-acquired anatomical MRI data and report performance metrics and changes across the adult lifespan. METHODS: Fully convolutional neural networks were trained from 3D T1-weighted, 3D T2-weighted, and 2D T2-weighted FLAIR MRI using gold-standard manual segmentations in control and neurodegenerative participants across the lifespan (n = 50; age = 21-85 years). Dice coefficients, 95% Hausdorff distances, and area-under-curve (AUCs) were calculated for each model and compared to segmentations from FreeSurfer using two-tailed Wilcoxon tests (significance criteria: p < 0.05 after false discovery rate multiple comparisons correction). Metrics were regressed against lateral ventricular volume using generalized linear models to assess model performance for varying levels of atrophy. Finally, models were applied to an expanded cohort of adult controls (n = 98; age = 21-89 years) to provide an exemplar of choroid plexus volumetry values across the lifespan. RESULTS: Deep learning results yielded Dice coefficient = 0.72, Hausdorff distance = 1.97 mm, AUC = 0.87 for T1-weighted MRI, Dice coefficient = 0.72, Hausdorff distance = 2.22 mm, AUC = 0.87 for T2-weighted MRI, and Dice coefficient = 0.74, Hausdorff distance = 1.69 mm, AUC = 0.87 for T2-weighted FLAIR MRI; values did not differ significantly between MRI sequences and were statistically improved compared to current commercially-available algorithms (p < 0.001). The intraclass coefficients were 0.95, 0.95, and 0.96 between T1-weighted and T2-weighted FLAIR, T1-weighted and T2-weighted, and T2-weighted and T2-weighted FLAIR models, respectively. Mean lateral ventricle choroid plexus volume across all participants was 3.20 ± 1.4 cm3; a significant, positive relationship (R2 = 0.54-0.60) was observed between participant age and choroid plexus volume for all MRI sequences (p < 0.001). CONCLUSIONS: Findings support comparable performance in choroid plexus delineation between standard, clinically available, non-contrasted anatomical MRI sequences. The software embedding the evaluated models is freely available online and should provide a useful tool for the growing number of studies that desire to quantitatively evaluate choroid plexus structure and function ( https://github.com/hettk/chp_seg ).


Assuntos
Aprendizado Profundo , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Processamento de Imagem Assistida por Computador/métodos , Longevidade , Plexo Corióideo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
2.
Fluids Barriers CNS ; 21(1): 40, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725029

RESUMO

BACKGROUND: Parkinson's disease is characterized by dopamine-responsive symptoms as well as aggregation of α-synuclein protofibrils. New diagnostic methods assess α-synuclein aggregation characteristics from cerebrospinal fluid (CSF) and recent pathophysiologic mechanisms suggest that CSF circulation disruptions may precipitate α-synuclein retention. Here, diffusion-weighted MRI with low-to-intermediate diffusion-weightings was applied to test the hypothesis that CSF motion is reduced in Parkinson's disease relative to healthy participants. METHODS: Multi-shell diffusion weighted MRI (spatial resolution = 1.8 × 1.8 × 4.0 mm) with low-to-intermediate diffusion weightings (b-values = 0, 50, 100, 200, 300, 700, and 1000 s/mm2) was applied over the approximate kinetic range of suprasellar cistern fluid motion at 3 Tesla in Parkinson's disease (n = 27; age = 66 ± 6.7 years) and non-Parkinson's control (n = 32; age = 68 ± 8.9 years) participants. Wilcoxon rank-sum tests were applied to test the primary hypothesis that the noise floor-corrected decay rate of CSF signal as a function of b-value, which reflects increasing fluid motion, is reduced within the suprasellar cistern of persons with versus without Parkinson's disease and inversely relates to choroid plexus activity assessed from perfusion-weighted MRI (significance-criteria: p < 0.05). RESULTS: Consistent with the primary hypothesis, CSF decay rates were higher in healthy (D = 0.00673 ± 0.00213 mm2/s) relative to Parkinson's disease (D = 0.00517 ± 0.00110 mm2/s) participants. This finding was preserved after controlling for age and sex and was observed in the posterior region of the suprasellar cistern (p < 0.001). An inverse correlation between choroid plexus perfusion and decay rate in the voxels within the suprasellar cistern (Spearman's-r=-0.312; p = 0.019) was observed. CONCLUSIONS: Multi-shell diffusion MRI was applied to identify reduced CSF motion at the level of the suprasellar cistern in adults with versus without Parkinson's disease; the strengths and limitations of this methodology are discussed in the context of the growing literature on CSF flow.


Assuntos
Líquido Cefalorraquidiano , Imagem de Difusão por Ressonância Magnética , Doença de Parkinson , Humanos , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Líquido Cefalorraquidiano/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia , Movimento (Física)
3.
Fluids Barriers CNS ; 21(1): 15, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350930

RESUMO

BACKGROUND: Peri-sinus structures such as arachnoid granulations (AG) and the parasagittal dural (PSD) space have gained much recent attention as sites of cerebral spinal fluid (CSF) egress and neuroimmune surveillance. Neurofluid circulation dysfunction may manifest as morphological changes in these structures, however, automated quantification of these structures is not possible and rather characterization often requires exogenous contrast agents and manual delineation. METHODS: We propose a deep learning architecture to automatically delineate the peri-sinus space (e.g., PSD and intravenous AG structures) using two cascaded 3D fully convolutional neural networks applied to submillimeter 3D T2-weighted non-contrasted MRI images, which can be routinely acquired on all major MRI scanner vendors. The method was evaluated through comparison with gold-standard manual tracing from a neuroradiologist (n = 80; age range = 11-83 years) and subsequently applied in healthy participants (n = 1,872; age range = 5-100 years), using data from the Human Connectome Project, to provide exemplar metrics across the lifespan. Dice-Sørensen and a generalized linear model was used to assess PSD and AG changes across the human lifespan using quadratic restricted splines, incorporating age and sex as covariates. RESULTS: Findings demonstrate that the PSD and AG volumes can be segmented using T2-weighted MRI with a Dice-Sørensen coefficient and accuracy of 80.7 and 74.6, respectively. Across the lifespan, we observed that total PSD volume increases with age with a linear interaction of gender and age equal to 0.9 cm3 per year (p < 0.001). Similar trends were observed in the frontal and parietal, but not occipital, PSD. An increase in AG volume was observed in the third to sixth decades of life, with a linear effect of age equal to 0.64 mm3 per year (p < 0.001) for total AG volume and 0.54 mm3 (p < 0.001) for maximum AG volume. CONCLUSIONS: A tool that can be applied to quantify PSD and AG volumes from commonly acquired T2-weighted MRI scans is reported and exemplar volumetric ranges of these structures are provided, which should provide an exemplar for studies of neurofluid circulation dysfunction. Software and training data are made freely available online ( https://github.com/hettk/spesis ).


Assuntos
Aprendizado Profundo , Longevidade , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Pré-Escolar , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Espectroscopia de Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA