Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genes Dev ; 28(24): 2712-25, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512559

RESUMO

Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Senescência Celular/fisiologia , Chaperonas de Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Senescência Celular/genética , Cromatina/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Papiloma/patologia , Neoplasias Cutâneas/patologia , Tamoxifeno/farmacologia , Fatores de Transcrição/genética
2.
Proc Natl Acad Sci U S A ; 110(40): 16009-14, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043806

RESUMO

Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy.


Assuntos
Senescência Celular/fisiologia , Melanócitos/fisiologia , Melanoma/etiologia , Nevo/fisiopatologia , Via de Sinalização Wnt/fisiologia , Animais , Linhagem Celular Tumoral , Primers do DNA/genética , Células HEK293 , Humanos , Immunoblotting , Imuno-Histoquímica , Melanócitos/citologia , Camundongos , Análise em Microsséries , Nevo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
3.
Cell Rep ; 12(9): 1483-96, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26299965

RESUMO

Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.


Assuntos
Senescência Celular , Células Gigantes/citologia , Mitose , Proteínas ras/metabolismo , Linhagem Celular , Células Cultivadas , Células Gigantes/metabolismo , Humanos , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas ras/genética
4.
Acta Biomater ; 7(7): 2919-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21459166

RESUMO

Biomimicry is being used in the next generation of biomaterials. Tuning material surface features such as chemistry, stiffness and topography allow the control of cell adhesion, proliferation, growth and differentiation. Here, microtopographical features with nanoscale depths, similar in scale to osteoclast resorption pits, were used to promote in vitro bone formation in basal medium. Primary human osteoblasts were used to represent an orthopaedically relevant cell type and analysis of adhesions, cytoskeleton, osteospecific proteins (phospho-Runx2 and osteopontin) and mineralisation (alizarin red) was performed. The results further demonstrate the potential for biomimicry in material design and show that the osteoblast response can be tuned from changes in feature size.


Assuntos
Biomimética , Osteogênese/fisiologia , Materiais Biocompatíveis/metabolismo , Adesão Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteopontina/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA