RESUMO
Background Computational models based on artificial intelligence (AI) are increasingly used to diagnose malignant breast lesions. However, assessment from radiologic images of the specific pathologic lesion subtypes, as detailed in the results of biopsy procedures, remains a challenge. Purpose To develop an AI-based model to identify breast lesion subtypes with mammograms and linked electronic health records labeled with histopathologic information. Materials and Methods In this retrospective study, 26 569 images were collected in 9234 women who underwent digital mammography to pretrain the algorithms. The training data included individuals who had at least 1 year of clinical and imaging history followed by biopsy-based histopathologic diagnosis from March 2013 to November 2018. A model that combined convolutional neural networks with supervised learning algorithms was independently trained to make breast lesion predictions with data from 2120 women in Israel and 1642 women in the United States. Results were reported using the area under the receiver operating characteristic curve (AUC) with the 95% DeLong approach to estimate CIs. Significance was tested with bootstrapping. Results The Israeli model was validated in 456 women and tested in 441 women (mean age, 51 years ± 11 [SD]). The U.S. model was validated in 350 women and tested in 344 women (mean age, 60 years ± 12). For predicting malignancy in the test sets (consisting of 220 Israeli patient examinations and 126 U.S. patient examinations with ductal carcinoma in situ or invasive cancer), the algorithms obtained an AUC of 0.88 (95% CI: 0.85, 0.91) and 0.80 (95% CI: 0.74, 0.85) for Israeli and U.S. patients, respectively (P = .006). These results may not hold for other cohorts of patients, and generalizability across populations should be further investigated. Conclusion The results offer supporting evidence that artificial intelligence applied to clinical and mammographic images can identify breast lesion subtypes when the data are sufficiently large, which may help assess diagnostic workflow and reduce biopsy sampling errors. Published under a CC BY 4.0 license. Online supplemental material is available for this article.
Assuntos
Inteligência Artificial , Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Mamografia/métodos , Mama/diagnóstico por imagem , Biópsia , Neoplasias da Mama/diagnóstico por imagemRESUMO
Oral squamous cell carcinoma (OSCC) accounts for more than 90% of oral malignancies. Despite numerous advancements in understanding its biology, the mean five-year survival rate of OSCC is still very poor at about 50%, with even lower rates when the disease is detected at later stages. We investigate the use of clinical photographic images taken by common smartphones for the automated detection of OSCC cases and for the identification of suspicious cases mimicking cancer that require an urgent biopsy. We perform a retrospective study on a cohort of 1470 patients drawn from both hospital records and online academic sources. We examine various deep learning methods for the early detection of OSCC cases as well as for the detection of suspicious cases. Our results demonstrate the efficacy of these methods in both tasks, providing a comprehensive understanding of the patient's condition. When evaluated on holdout data, the model to predict OSCC achieved an AUC of 0.96 (CI: 0.91, 0.98), with a sensitivity of 0.91 and specificity of 0.81. When the data are stratified based on lesion location, we find that our models can provide enhanced accuracy (AUC 1.00) in differentiating specific groups of patients that have lesions in the lingual mucosa, floor of mouth, or posterior tongue. These results underscore the potential of leveraging clinical photos for the timely and accurate identification of OSCC.
RESUMO
BACKGROUND: The outbreak of the COVID-19 pandemic had a major effect on the consumption of health care services. Changes in the use of routine diagnostic exams, increased incidences of postacute COVID-19 syndrome (PCS), and other pandemic-related factors may have influenced detected clinical conditions. OBJECTIVE: This study aimed to analyze the impact of COVID-19 on the use of outpatient medical imaging services and clinical findings therein, specifically focusing on the time period after the launch of the Israeli COVID-19 vaccination campaign. In addition, the study tested whether the observed gains in abnormal findings may be linked to PCS or COVID-19 vaccination. METHODS: Our data set included 572,480 ambulatory medical imaging patients in a national health organization from January 1, 2019, to August 31, 2021. We compared different measures of medical imaging utilization and clinical findings therein before and after the surge of the pandemic to identify significant changes. We also inspected the changes in the rate of abnormal findings during the pandemic after adjusting for changes in medical imaging utilization. Finally, for imaging classes that showed increased rates of abnormal findings, we measured the causal associations between SARS-CoV-2 infection, COVID-19-related hospitalization (indicative of COVID-19 complications), and COVID-19 vaccination and future risk for abnormal findings. To adjust for a multitude of confounding factors, we used causal inference methodologies. RESULTS: After the initial drop in the utilization of routine medical imaging due to the first COVID-19 wave, the number of these exams has increased but with lower proportions of older patients, patients with comorbidities, women, and vaccine-hesitant patients. Furthermore, we observed significant gains in the rate of abnormal findings, specifically in musculoskeletal magnetic resonance (MR-MSK) and brain computed tomography (CT-brain) exams. These results also persisted after adjusting for the changes in medical imaging utilization. Demonstrated causal associations included the following: SARS-CoV-2 infection increasing the risk for an abnormal finding in a CT-brain exam (odds ratio [OR] 1.4, 95% CI 1.1-1.7) and COVID-19-related hospitalization increasing the risk for abnormal findings in an MR-MSK exam (OR 3.1, 95% CI 1.9-5.3). CONCLUSIONS: COVID-19 impacted the use of ambulatory imaging exams, with greater avoidance among patients at higher risk for COVID-19 complications: older patients, patients with comorbidities, and nonvaccinated patients. Causal analysis results imply that PCS may have contributed to the observed gains in abnormal findings in MR-MSK and CT-brain exams.
RESUMO
In current clinical practice, it is difficult to predict whether a patient receiving neoadjuvant chemotherapy (NAC) for breast cancer is likely to encounter recurrence after treatment and have the cancer recur locally in the breast or in other areas of the body. We explore the use of clinical history, immunohistochemical markers, and multiparametric magnetic resonance imaging (DCE, ADC, Dixon) to predict the risk of post-treatment recurrence within five years. We performed a retrospective study on a cohort of 1738 patients from Institut Curie and analyzed the data using classical machine learning, image processing, and deep learning. Our results demonstrate the ability to predict recurrence prior to NAC treatment initiation using each modality alone, and the possible improvement achieved by combining the modalities. When evaluated on holdout data, the multimodal model achieved an AUC of 0.75 (CI: 0.70, 0.80) and 0.57 specificity at 0.90 sensitivity. We then stratified the data based on known prognostic biomarkers. We found that our models can provide accurate recurrence predictions (AUC > 0.89) for specific groups of women under 50 years old with poor prognoses. A version of our method won second place at the BMMR2 Challenge, with a very small margin from being first, and was a standout from the other challenge entries.
RESUMO
"No-shows", defined as missed appointments or late cancellations, is a central problem in healthcare systems. It has appeared to intensify during the COVID-19 pandemic and the nonpharmaceutical interventions, such as closures, taken to slow its spread. No-shows interfere with patients' continuous care, lead to inefficient utilization of medical resources, and increase healthcare costs. We present a comprehensive analysis of no-shows for breast imaging appointments made during 2020 in a large medical network in Israel. We applied advanced machine learning methods to provide insights into novel and known predictors. Additionally, we employed causal inference methodology to infer the effect of closures on no-shows, after accounting for confounding biases, and demonstrate the superiority of adversarial balancing over inverse probability weighting in correcting these biases. Our results imply that a patient's perceived risk of cancer and the COVID-19 time-based factors are major predictors. Further, we reveal that closures impact patients over 60, but not patients undergoing advanced diagnostic examinations.