Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32668451

RESUMO

Neuronal migration during development is necessary to form an ordered and functional brain. Postmitotic neurons require microtubules and dynein to move, but the mechanisms by which they contribute to migration are not fully characterized. Using tegmental hindbrain nuclei neurons in zebrafish embryos together with subcellular imaging, optogenetics, and photopharmacology, we show that, in vivo, the centrosome's position relative to the nucleus is not linked to greatest motility in this cell type. Nevertheless, microtubules, dynein, and kinesin-1 are essential for migration, and we find that interference with endosome formation or the Golgi apparatus impairs migration to a similar extent as disrupting microtubules. In addition, an imbalance in the traffic of the model cargo Cadherin-2 also reduces neuronal migration. These results lead us to propose that microtubules act as cargo carriers to control spatiotemporal protein distribution, which in turn controls motility. This adds crucial insights into the variety of ways that microtubules can support successful neuronal migration in vivo.


Assuntos
Caderinas/genética , Desenvolvimento Embrionário/genética , Cinesinas/genética , Neurônios/metabolismo , Animais , Movimento Celular/genética , Dineínas/genética , Embrião não Mamífero , Complexo de Golgi/genética , Proteínas dos Microtúbulos/genética , Microtúbulos/genética , Proteínas Motores Moleculares/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
2.
Nat Commun ; 10(1): 5220, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745086

RESUMO

The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish. The HPD system differentiates from a rod of unpolarized cells into mature ducts by de novo lumen formation in a dynamic multi-step process. The remodeling step from multiple nascent lumina into a single lumen requires active cell intercalation and myosin contractility. We identify key functions for EphB/EphrinB signaling in this dynamic remodeling step. Two EphrinB ligands, EphrinB1 and EphrinB2a, and two EphB receptors, EphB3b and EphB4a, control HPD morphogenesis by remodeling individual ductal compartments, and thereby coordinate the morphogenesis of this multi-compartment ductal system.


Assuntos
Ductos Biliares/metabolismo , Efrina-B1/metabolismo , Hepatopâncreas/metabolismo , Receptores da Família Eph/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Ductos Biliares/embriologia , Diferenciação Celular/genética , Efrina-B1/genética , Efrina-B3/genética , Efrina-B3/metabolismo , Perfilação da Expressão Gênica , Hepatopâncreas/embriologia , Ligantes , Morfogênese/genética , Mutação , Ligação Proteica , Receptores da Família Eph/genética , Transdução de Sinais/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA