Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(5): 814-826, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997670

RESUMO

Missense mutations in PLCG2 can cause autoinflammation with phospholipase C gamma 2-associated antibody deficiency and immune dysregulation (APLAID). Here, we generated a mouse model carrying an APLAID mutation (p.Ser707Tyr) and found that inflammatory infiltrates in the skin and lungs were only partially ameliorated by removing inflammasome function via the deletion of caspase-1. Also, deleting interleukin-6 or tumor necrosis factor did not fully prevent APLAID mutant mice from autoinflammation. Overall, these findings are in accordance with the poor response individuals with APLAID have to treatments that block interleukin-1, JAK1/2 or tumor necrosis factor. Cytokine analysis revealed increased granulocyte colony-stimulating factor (G-CSF) levels as the most distinct feature in mice and individuals with APLAID. Remarkably, treatment with a G-CSF antibody completely reversed established disease in APLAID mice. Furthermore, excessive myelopoiesis was normalized and lymphocyte numbers rebounded. APLAID mice were also fully rescued by bone marrow transplantation from healthy donors, associated with reduced G-CSF production, predominantly from non-hematopoietic cells. In summary, we identify APLAID as a G-CSF-driven autoinflammatory disease, for which targeted therapy is feasible.


Assuntos
Transplante de Medula Óssea , Fator Estimulador de Colônias de Granulócitos , Animais , Camundongos , Citocinas , Interleucina-1 , Fator de Necrose Tumoral alfa/genética , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo
2.
Am J Pathol ; 193(12): 2001-2016, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37673326

RESUMO

Bronchopulmonary dysplasia (BPD), also called chronic lung disease of immaturity, afflicts approximately one third of all extremely premature infants, causing lifelong lung damage. There is no effective treatment other than supportive care. Retinopathy of prematurity (ROP), which impairs vision irreversibly, is common in BPD, suggesting a related pathogenesis. However, specific mechanisms of BPD and ROP are not known. Herein, a neonatal mouse hyperoxic model of coincident BPD and retinopathy was used to screen for candidate mediators, which revealed that granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3, was up-regulated significantly in mouse lung lavage fluid and plasma at postnatal day 14 in response to hyperoxia. Preterm infants with more severe BPD had increased plasma G-CSF. G-CSF-deficient neonatal pups showed significantly reduced alveolar simplification, normalized alveolar and airway resistance, and normalized weight gain compared with wild-type pups after hyperoxic lung injury. This was associated with a marked reduction in the intensity, and activation state, of neutrophilic and monocytic inflammation and its attendant oxidative stress response, and protection of lung endothelial cells. G-CSF deficiency also provided partial protection against ROP. The findings in this study implicate G-CSF as a pathogenic mediator of BPD and ROP, and suggest the therapeutic utility of targeting G-CSF biology to treat these conditions.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Retinopatia da Prematuridade , Lactente , Recém-Nascido , Animais , Humanos , Camundongos , Displasia Broncopulmonar/patologia , Recém-Nascido Prematuro , Células Endoteliais/patologia , Pulmão/patologia , Hiperóxia/complicações , Retinopatia da Prematuridade/patologia , Fator Estimulador de Colônias de Granulócitos , Animais Recém-Nascidos
3.
Am J Respir Cell Mol Biol ; 69(1): 99-112, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014138

RESUMO

The epidemiological patterns of incident chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma are changing, with an increasing fraction of disease occurring in patients who are never-smokers or were not exposed to traditional risk factors. However, causative mechanism(s) are obscure. Overactivity of Src family kinases (SFKs) and myeloid cell-dependent inflammatory lung epithelial and endothelial damage are independent candidate mechanisms, but their pathogenic convergence has not been demonstrated. Here we present a novel preclinical model in which an activating mutation in Lyn, a nonreceptor SFK that is expressed in immune cells, epithelium, and endothelium-all strongly implicated in the pathogenesis of COPD-causes spontaneous inflammation, early-onset progressive emphysema, and lung adenocarcinoma. Surprisingly, even though activated macrophages, elastolytic enzymes, and proinflammatory cytokines were prominent, bone marrow chimeras formally demonstrated that myeloid cells were not disease initiators. Rather, lung disease arose from aberrant epithelial cell proliferation and differentiation, microvascular lesions within an activated endothelial microcirculation, and amplified EGFR (epidermal growth factor receptor) expression. In human bioinformatics analyses, LYN expression was increased in patients with COPD and was correlated with increased EGFR expression, a known lung oncogenic pathway, and LYN was linked to COPD. Our study shows that a singular molecular defect causes a spontaneous COPD-like immunopathology and lung adenocarcinoma. Furthermore, we identify Lyn and, by implication, its associated signaling pathways as new therapeutic targets for COPD and cancer. Moreover, our work may inform the development of molecular risk screening and intervention methods for disease susceptibility, progression, and prevention of these increasingly prevalent conditions.


Assuntos
Adenocarcinoma de Pulmão , Enfisema , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Adenocarcinoma de Pulmão/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/genética , Quinases da Família src/metabolismo
4.
Immunol Cell Biol ; 100(4): 223-234, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156238

RESUMO

Recent advances in the field of host immunity against parasitic nematodes have revealed the importance of macrophages in trapping tissue migratory larvae. Protective immune mechanisms against the rodent hookworm Nippostrongylus brasiliensis (Nb) are mediated, at least in part, by IL-4-activated macrophages that bind and trap larvae in the lung. However, it is still not clear how host macrophages recognize the parasite. An in vitro co-culture system of bone marrow-derived macrophages and Nb infective larvae was utilized to screen for the possible ligand-receptor pair involved in macrophage attack of larvae. Competitive binding assays revealed an important role for ß-glucan recognition in the process. We further identified a role for CD11b and the non-classical pattern recognition receptor ephrin-A2 (EphA2), but not the highly expressed ß-glucan dectin-1 receptor, in this process of recognition. This work raises the possibility that parasitic nematodes synthesize ß-glucans and it identifies CD11b and ephrin-A2 as important pattern recognition receptors involved in the host recognition of these evolutionary old pathogens. To our knowledge, this is the first time that EphA2 has been implicated in immune responses to a helminth.


Assuntos
Interleucina-4 , Lectinas Tipo C , Ancylostomatoidea , Animais , Interleucina-4/metabolismo , Larva , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Receptores Imunológicos
5.
Immunol Cell Biol ; 99(10): 1053-1066, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514627

RESUMO

The leukocyte-restricted tetraspanin CD53 has been shown to promote lymphocyte homing to lymph nodes (LNs) and myeloid cell recruitment to acutely inflamed peripheral organs, and accelerate the onset of immune-mediated disease. However, its contribution in the setting of chronic systemic autoimmunity has not been investigated. We made use of the Lyn-/- autoimmune model, generating Cd53-/- Lyn-/- mice, and compared trafficking of immune cells into secondary lymphoid organs and systemic autoimmune disease development with mice lacking either gene alone. Consistent with previous observations, absence of CD53 led to reduced LN cellularity via reductions in both B and T cells, a phenotype also observed in Cd53-/- Lyn-/- mice. In some settings, Cd53-/- Lyn-/- lymphocytes showed greater loss of surface L-selectin and CD69 upregulation above that imparted by Lyn deficiency alone, indicating that absence of these two proteins can mediate additive effects in the immune system. Conversely, prototypical effects of Lyn deficiency including splenomegaly, plasma cell expansion, elevated serum immunoglobulin M and anti-nuclear antibodies were unaffected by CD53 deficiency. Furthermore, while Lyn-/- mice developed glomerular injury and showed elevated glomerular neutrophil retention above than that in wild-type mice, absence of CD53 in Lyn-/- mice did not alter these responses. Together, these findings demonstrate that while tetraspanin CD53 promotes lymphocyte trafficking into LNs independent of Lyn, it does not make an important contribution to development of autoimmunity, plasma cell dysfunction or glomerular injury in the Lyn-/- model of systemic autoimmunity.


Assuntos
Autoimunidade , Ativação Linfocitária , Tetraspanina 25/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T , Quinases da Família src/genética
6.
J Neuroinflammation ; 18(1): 276, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838047

RESUMO

Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
7.
Am J Pathol ; 190(9): 1801-1812, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526165

RESUMO

Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two debilitating disorders that develop in preterm infants exposed to supplemental oxygen to prevent respiratory failure. Both can lead to lifelong disabilities, such as chronic obstructive pulmonary disease and vision loss. Due to the lack of a standard experimental model of coincident disease, the underlying associations between BPD and ROP are not well characterized. To address this gap, we used the robust mouse model of oxygen-induced retinopathy exposing C57BL/6 mice to 75% oxygen from postnatal day 7 to 12. The cardinal features of ROP were replicated by this strategy, and the lungs of the same mice were simultaneously examined for evidence of BPD-like lung injury, investigating both the short- and long-term effects of early-life supplemental oxygen exposure. At postnatal days 12 and 18, mild lung disease was evident by histopathologic analysis together with the expected vasculopathy in the inner retina. At later time points, the lung lesion had progressed to severe airspace enlargement and alveolar simplification, with concurrent thinning in the outer layer of the retina. In addition, critical angiogenic oxidative stress and inflammatory factors reported to be dysregulated in ROP were similarly impaired in the lungs. These data shed new light on the interconnectedness of these two neonatal disorders, holding potential for the discovery of novel targets to treat BPD and ROP.


Assuntos
Displasia Broncopulmonar/etiologia , Modelos Animais de Doenças , Oxigenoterapia/efeitos adversos , Oxigênio/toxicidade , Retinopatia da Prematuridade/etiologia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Inflamação/etiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Retinopatia da Prematuridade/patologia
8.
Brain Behav Immun ; 79: 63-74, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31029794

RESUMO

Traumatic brain injury (TBI) is a serious global health issue, being the leading cause of death and disability for individuals under the age of 45, and one of the largest causes of global neurological disability. In addition to the brain injury itself, it is increasingly appreciated that a TBI may also alter the systemic immune response in a way that renders TBI patients more vulnerable to infections in the acute post-injury period. Such infections pose an additional challenge to the patient, increasing rates of mortality and morbidity, and worsening neurological outcomes. Hospitalization, surgical interventions, and a state of immunosuppression induced by injury to the central nervous system (CNS), may all contribute to the high rate of infections seen in the population with TBI. Ongoing research to better understand the immunomodulators that underlie TBI-induced immunosuppression may aid in the development of effective therapeutic strategies to improve the recovery trajectory for patients. This review first describes the clinical scenario, posing the question of whether TBI patients are more susceptible to infections such as pneumonia, and if so, why? We then consider how cross-talk between the injured brain and the systemic immune system occurs, and further, how the additional immune challenge of an acquired infection can contribute to ongoing neuroinflammation and neurodegeneration after a TBI. Experimental models combining TBI with infection are discussed, as well as current treatment options available for this double-barreled insult. The aims of this review are to summarize current understanding of the bidirectional relationship between the CNS and the immune system when faced with a mechanical trauma combined with a concomitant infection, and to highlight key outstanding questions that remain in the field.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Neuroimunomodulação/fisiologia , Animais , Encéfalo/imunologia , Lesões Encefálicas/imunologia , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Humanos , Imunidade/fisiologia , Infecções/imunologia , Inflamação/fisiopatologia , Neuroimunomodulação/imunologia
9.
Growth Factors ; 36(5-6): 213-231, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30764683

RESUMO

SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Transdução de Sinais , Animais , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química
10.
Immunol Cell Biol ; 96(9): 981-993, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29738610

RESUMO

The role of the immunoproteasome is perceived as confined to adaptive immune responses given its ability to produce peptides ideal for MHC Class-I binding. Here, we demonstrate that the immunoproteasome subunit, LMP2, has functions beyond its immunomodulatory role. Using LMP2-deficient mice, we demonstrate that LMP2 is crucial for lymphocyte development and survival in the periphery. Moreover, LMP2-deficient lymphocytes show impaired degradation of key BH3-only proteins, resulting in elevated levels of pro-apoptotic BIM and increased cell death. Interestingly, LMP2 is the sole immunoproteasome subunit required for BIM degradation. Together, our results suggest LMP2 has important housekeeping functions and represents a viable therapeutic target for cancer.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/imunologia , Cisteína Endopeptidases/imunologia , Linfócitos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Cisteína Endopeptidases/deficiência , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/deficiência
11.
Immunol Cell Biol ; 95(3): 225-235, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27670791

RESUMO

The lung myeloid cell microenvironment comprises airway, alveolar and interstitial macrophages, peripheral blood recruited lung monocytes as well as residential and migratory dendritic cell subsets. Findings from fate mapping, parabiosis, transcriptome and epigenome profiling studies now indicate that tissue macrophage and monocyte subsets possess specialized functions which differentially impact homoeostatic tolerance, pathogen detection and pathogen killing. In the lungs, residential alveolar macrophages are catabolic and immunosuppressive in contrast to the classically pro-inflammatory repertoire of lung monocytes and monocyte-derived dendritic cells recruited during acute inflammation. Here, we review the identity and functions of all lung macrophage and monocyte subsets during homoeostasis and acute lung inflammation, with a special focus on their contributions to influenza virus detection, clearance and the development of influenza-induced lung pathologies. Subsequent implications for the development of new therapeutic targets against influenza-induced lung pathologies will also be discussed.


Assuntos
Influenza Humana/patologia , Influenza Humana/virologia , Pulmão/patologia , Macrófagos/patologia , Monócitos/patologia , Animais , Humanos , Pneumonia/microbiologia , Pneumonia/patologia , Pneumonia/virologia , Transcrição Gênica
12.
J Pathol ; 239(2): 152-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26924464

RESUMO

Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF-D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF-D in pathological oedema was unknown. To address these issues, we exposed Vegfd-deficient mice to hyperoxia. The resulting pulmonary oedema in Vegfd-deficient mice was substantially reduced compared to wild-type, as was the protein content of bronchoalveolar lavage fluid, consistent with reduced vascular leak. Vegf-d and its receptor Vegfr-3 were more highly expressed in lungs of hyperoxic, versus normoxic, wild-type mice, indicating that components of the Vegf-d signalling pathway are up-regulated in hyperoxia. Importantly, VEGF-D and its receptors were co-localized on blood vessels in clinical samples of human lungs exposed to hyperoxia; hence, VEGF-D may act directly on blood vessels to promote fluid leak. Our studies show that Vegf-d promotes oedema in response to hyperoxia in mice and support the hypothesis that VEGF-D signalling promotes vascular leak in human HALI. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Lesão Pulmonar Aguda/complicações , Hiperóxia/complicações , Edema Pulmonar/etiologia , Transdução de Sinais , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular Tumoral , Feminino , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Oxigênio/metabolismo , Edema Pulmonar/complicações , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Fator D de Crescimento do Endotélio Vascular/administração & dosagem , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Autoimmun ; 62: 1-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26103922

RESUMO

B cell activating factor of the tumor necrosis factor family (BAFF or BLyS) is a critical factor for B cell survival and maturation. BAFF-transgenic (BAFF-Tg) mice develop autoimmunity that resembles systemic lupus erythematosus (SLE) in a T cell-independent but MyD88-dependent manner, implicating toll-like receptor (TLR) signaling. The specific B cell subtypes that make pro-inflammatory autoantibodies in BAFF-Tg mice are TLR-activated innate B cells known as marginal zone (MZ) and B1 B cells. These cells infiltrate the salivary glands and kidneys of diseased BAFF-Tg mice. However, loss of B1a or MZ B cells does not protect BAFF-Tg mice against disease, suggesting that B1b B cells might be the important pathogenic B cell subset. To test this hypothesis, we have generated BAFF-Tg mice that retained follicular B cells, but are deficient in B1a, B1b and MZ B cells, by crossing BAFF-Tg mice to CD19-deficient mice (BTg-CD19(-/-)). The BTg-CD19(-/-) mice did not produce autoantibodies and were protected from splenomegaly, kidney pathology and all signs of autoimmunity. This work suggests that B1b B cells, rather than MZ or B1a B cells, are sufficient and possibly required for the development of autoimmunity. Loss of the majority of innate-like B cells was able to protect BAFF-Tg mice from developing disease, so we can now conclude that autoimmunity induced by excessive BAFF production requires B1b B cells and CD19 signaling.


Assuntos
Antígenos CD19/genética , Autoimunidade/genética , Autoimunidade/imunologia , Fator Ativador de Células B/metabolismo , Regulação da Expressão Gênica , Animais , Autoanticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Complemento C3/imunologia , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Transdução de Sinais , Receptores Toll-Like/metabolismo
14.
Blood ; 122(2): 262-71, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23692855

RESUMO

Lyn is involved in erythropoietin (Epo)-receptor signaling and erythroid homeostasis. Downstream pathways influenced following Lyn activation and their significance to erythropoiesis remain unclear. To address this, we assessed a gain-of-function Lyn mutation (Lyn(up/up)) on erythropoiesis and Epo receptor signaling. Adult Lyn(up/up) mice were anemic, with dysmorphic red cells (spherocyte-like, acanthocytes) in their circulation, indicative of hemolytic anemia and resembling the human disorder chorea acanthocytosis. Heterozygous Lyn(+/up) mice became increasingly anemic with age, indicating that the mutation was dominant. In an attempt to overcome this anemia, extramedullary erythropoiesis was activated. As the mice aged, the levels of different immature erythroid populations changed, indicating compensatory mechanisms to produce more erythrocytes were dynamic. Changes in Epo signaling were observed in Lyn(+/up) erythroid cell lines and primary CD71(+) Lyn(up/up) erythroblasts, including significant alterations to the phosphorylation of Lyn, the Epo receptor, Janus kinase 2, Signal Transducer and Action of Transcription-5, GRB2-associated-binding protein-2, Akt, and Forkhead box O3. As a consequence of altered Lyn signaling, Lyn(+/up) cells remained viable in the absence of Epo but displayed delayed Epo-induced differentiation. These data demonstrate that Lyn gene dosage and activity are critical for normal erythropoiesis; constitutively active Lyn alters Epo signaling, which in turn produces erythroid defects.


Assuntos
Anemia Hemolítica/genética , Anemia Hemolítica/metabolismo , Eritropoese/fisiologia , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Quinases da Família src/genética , Proteínas Adaptadoras de Transdução de Sinal , Anemia Hemolítica/sangue , Animais , Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Ativação Enzimática/genética , Índices de Eritrócitos , Eritrócitos/patologia , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoetina/farmacologia , Janus Quinase 2/metabolismo , Camundongos , Camundongos Transgênicos , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Baço/metabolismo , Quinases da Família src/metabolismo
15.
Biochem J ; 459(3): 455-66, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24552351

RESUMO

Erythroid homoeostasis is primarily controlled by Epo (erythropoietin) receptor signalling; however, the Lyn tyrosine kinase plays an important subsidiary role in regulating the erythroid compartment. Nonetheless, specific erythroid pathways that require Lyn activity and their biological significance remain unclear. To address this, we asked what consequence loss of Lyn had on the ex vivo expansion and maturation of splenic erythroid progenitors and Epo receptor signalling. Pharmacological inhibition of Lyn with PP2 inhibited the survival of terminally differentiated erythroblasts. Less committed erythroid progenitors expanded well, whereas early splenic Lyn(-/-) erythroblasts had attenuated ex vivo expansion, and late stage Lyn(-/-) erythroblasts were retarded in completing morphological maturation ex vivo. Furthermore, immortalized Lyn(-/-) erythroblasts were slower growing, less viable and inhibited in their differentiation. Signalling studies showed that Lyn was required for both positive GAB2/Akt/FoxO3 (forkhead box O3) survival signals as well as negative feedback of JAK2 (Janus kinase 2)/STAT5 (signal transducer and activator of transcription 5) and ERK1/2 (extracellular-signal-regulated kinase 1/2) signals via SHP-1 (Src homology 2 domain-containing protein tyrosine phosphatase 1). During differentiation, Lyn controls survival and cell cycle exit as demonstrated by reduced STAT5 and FoxO3/GSKα/ß (glycogen synthase kinase α/ß) phosphorylation and diminished p27(Kip1) induction in Lyn-deficient erythroblasts. Lyn deficiency alters the balance of pro- and anti-apoptotic molecules (BAD and BclXL), thereby reducing survival and preventing cell cycle exit. Consequently, Lyn facilitates normal erythrocyte production by influencing different stages of erythroid progenitor expansion, and mature cell development and survival signalling.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Eritroblastos/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoese , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos/citologia , Eritroblastos/citologia , Eritroblastos/efeitos dos fármacos , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Hematínicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores da Eritropoetina/agonistas , Transdução de Sinais/efeitos dos fármacos , Baço/citologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
16.
Arthritis Rheum ; 65(10): 2691-702, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23818297

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that is characterized by the production of antinuclear antibodies (ANAs) and leads to immune complex deposition in the kidneys and nephritis. Lyn tyrosine kinase is a regulator of antibody-mediated autoimmune disease, as evidenced by studies in gene-targeted mice and as suggested in genome-wide association studies in SLE. Like SLE patients, Lyn-deficient mice have increased levels of interleukin-6 (IL-6). Deletion of IL-6 from Lyn-deficient mice abrogates levels of inflammation, pathogenic autoantibodies, and nephritis. The purpose of this study was to assess the role of IL-6 trans-signaling in autoimmune disease by overexpressing soluble gp130Fc (sgp130Fc) in a mouse model. METHODS: The effect of overexpression of sgp130Fc on immune cell phenotypes was determined by flow cytometry in young and aged mice with lupus, and ANAs were measured by enzyme-linked immunosorbent assay. Glomerulonephritis was assessed by histopathologic analysis, by measuring the glomerular area and the blood urea nitrogen concentration, and by immunohistochemistry. Immunofluorescence defined renal immune complex and complement deposition. The acute-phase response was determined by quantitative real-time polymerase chain reaction. RESULTS: In contrast to removing IL-6, impaired IL-6 trans-signaling had little effect on many immune cell abnormalities in Lyn-/- mice. Pathogenic ANAs and kidney deposition of immune complexes were also unaltered by sgp130Fc. However, sgp130Fc overexpression led to diminished macrophage expansion, reduced glomerular leukocyte infiltration, reduced complement fixation, significantly attenuated glomerulonephritis, and improved renal function in Lyn-deficient mice. CONCLUSION: Our results reveal key roles of leukocytes, complement, and the innate immune system in mediating glomerulonephritis, and they implicate IL-6 trans-signaling in this process. We suggest that targeting this pathway may be an effective adjunct to B cell depletion in SLE treatment.


Assuntos
Suscetibilidade a Doenças/fisiopatologia , Inflamação/fisiopatologia , Interleucina-6/fisiologia , Rim/patologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Transdução de Sinais/fisiologia , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Rim/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/patologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Quinases da Família src/deficiência , Quinases da Família src/genética , Quinases da Família src/metabolismo
17.
J Immunol ; 189(2): 946-55, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22689883

RESUMO

Although great progress has been made in delineating lung dendritic cell and lymphocyte subpopulations, similar advances in lung macrophages (MΦs) have been hampered by their intrinsic autofluorescence, cell plasticity, and the complexities of monocyte-MΦ compartmentalization. Using spectral scanning, we define alveolar MΦ autofluorescence characteristics, which has allowed us to develop an alternative flow cytometry method. Using this methodology, we show that mouse lung MΦs form distinct subpopulations during acute inflammation after challenge with LPS or influenza virus, and in chronic inflammatory lung disease consequent to SHIP-1 deletion. These subpopulations are distinguished by differential Mac-1 and CD11c integrin expression rather than classical M1 or M2 markers, and display differential gene signatures ex vivo. Whereas the resolution of acute inflammation is characterized by restoration to a homogenous population of CD11c(high)Mac-1(neg/low) MΦs reflective of lung homeostasis, chronic inflammatory lung disease associated with SHIP-1 deficiency is accompanied by an additional subpopulation of CD11c(high)Mac-1(pos) MΦs that tracks with lung disease in susceptible genetic background SHIP-1(-/-) animals and disease induction in chimeric mice. These findings may help better understand the roles of MΦ subpopulations in lung homeostasis and disease.


Assuntos
Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/virologia , Inositol Polifosfato 5-Fosfatases , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/fisiologia , Pneumonia Viral/metabolismo , Fumar/imunologia
18.
J Immunol ; 189(4): 1726-36, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22798664

RESUMO

Ab-mediated autoimmune disease is multifaceted and may involve many susceptibility loci. The majority of autoimmune patients are thought to have polymorphisms in a number of genes that interact in different combinations to contribute to disease pathogenesis. Studies in mice and humans have implicated the Lyn protein tyrosine kinase as a regulator of Ab-mediated autoimmune disease. To examine whether haploinsufficiency of Lyn gives rise to cellular and clinical manifestations of autoimmune disease, we evaluated the phenotype of Lyn(+/-) mice. We find that their B cell compartment is significantly perturbed, with reduced numbers of marginal zone and transitional stage 2 B cells, expansion of plasma cells, downregulation of surface IgM, and upregulation of costimulatory molecules. Biochemical studies show that Lyn(+/-) B cells have defects in negative regulation of signaling, whereas Lyn(+/-) mice develop IgG autoantibodies and glomerulonephritis with age. Because Lyn has a pivotal role in the activation of inhibitory phosphatases, we generated mice harboring double heterozygous loss-of-function mutations in Lyn and SHP-1 or Lyn and SHIP-1. Partial inactivation of SHP-1 or SHIP-1 amplifies the consequence of Lyn haploinsufficiency, leading to an accelerated development of autoantibodies and disease. Our data also reveal that the BALB/c background is protective against autoimmune-mediated glomerulonephritis, even in the face of high titer autoantibodies, whereas the C57BL/6 background is susceptible. This study demonstrates that Lyn is a haploinsufficient gene in autoimmune disease and importantly shows that quantitative genetic variation in Lyn-regulated pathways can mirror the complete loss of a single critical inhibitory molecule.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/genética , Quinases da Família src/genética , Animais , Doenças Autoimunes/patologia , Linfócitos B/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transdução de Sinais/imunologia , Quinases da Família src/imunologia
19.
J Immunol ; 188(10): 5094-105, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22491248

RESUMO

The innate immune response is a first line of defense against invading pathogens; however, the magnitude of this response must be tightly regulated, as hyper- or suboptimal responses can be detrimental to the host. Systemic inflammation resulting from bacterial infection can lead to sepsis, which remains a serious problem with high mortality rates. Lyn tyrosine kinase plays a key role in adaptive immunity, although its role in innate immunity remains unclear. In this study, we show that Lyn gain-of-function (Lyn(up/up)) mice display enhanced sensitivity to endotoxin and succumb to upregulated proinflammatory cytokine production at a dose well tolerated by control animals. Endotoxin sensitivity in Lyn(up/up) mice depends on dendritic cells (DCs) and NK cells and occurs though a mechanism involving increased maturation and activation of the DC compartment, leading to elevated production of IFN-γ by NK cells. We further show that modulation of endotoxin-induced signal transduction in DCs by Lyn involves the phosphatases Src homology 2 domain-containing phosphatase-1 and SHIP-1. Collectively, we demonstrate that Lyn regulates DC physiology such that alterations in Lyn-dependent signaling have profound effects on the nature and magnitude of inflammatory responses. Our studies highlight how perturbations in signaling pathways controlling DC/NK cell-regulated responses to microbial products can profoundly affect the magnitude of innate immune responses.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Quinases da Família src/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Interferon gama/biossíntese , Interferon gama/genética , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Transdução de Sinais/genética , Quinases da Família src/deficiência
20.
Immunol Rev ; 237(1): 205-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20727038

RESUMO

One remarkable feature of the immune system is its capacity to maintain constant numbers of resting immune cells despite the complex nature of signals needed throughout development and maturation. For many years, B-cell survival was thought to rely solely on B-cell receptor (BCR) tonic signals that would trigger necessary basal survival pathways. The discovery of the tumor necrosis factor (TNF)-like ligand BAFF(B-cell activating factor belonging to the TNF family)/BLyS (B-lymphocyte stimulator) changed these views entirely, as BAFF-deficient mice lack most mature B cells, and treatment with BAFF inhibitors leads to their loss, establishing BAFF as an unappreciated key B-cell survival factor. BAFF-mediated survival signals have been mapped and signaling crosstalk with the BCR has been identified, explaining the need for both BCR- and BAFF-mediated signals for B-cell survival. However, this crosstalk only explains how BCR and BAFF signals cooperate to produce survival proteins and yet, inactivating pro-apoptotic factors such as FOXO proteins, which may be managed separately by BAFF and the BCR, has emerged as an equally important step for survival. In this review, we present new views on B-cell survival, at all stages of B-cell life, and suggest that, in most cases, survival results from the production of appropriate survival factors balanced with the adequate and timely degradation of pro-apoptotic proteins.


Assuntos
Fator Ativador de Células B/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Animais , Autoimunidade/imunologia , Subpopulações de Linfócitos B/citologia , Linfócitos B/citologia , Humanos , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA