Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 623(7985): 167-174, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757899

RESUMO

During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome1,2. Although the machinery responsible for initiation of macroautophagy has been well characterized3,4, our understanding of the extent to which individual proteins, protein complexes and organelles are selected for autophagic degradation, and the underlying targeting mechanisms, is limited. Here we use orthogonal proteomic strategies to provide a spatial proteome census of autophagic cargo during nutrient stress in mammalian cells. We find that macroautophagy has selectivity for recycling membrane-bound organelles (principally Golgi and endoplasmic reticulum). Through autophagic cargo prioritization, we identify a complex of membrane-embedded proteins, YIPF3 and YIPF4, as receptors for Golgiphagy. During nutrient stress, YIPF3 and YIPF4 interact with ATG8 proteins through LIR motifs and are mobilized into autophagosomes that traffic to lysosomes in a process that requires the canonical autophagic machinery. Cells lacking YIPF3 or YIPF4 are selectively defective in elimination of a specific cohort of Golgi membrane proteins during nutrient stress. Moreover, YIPF3 and YIPF4 play an analogous role in Golgi remodelling during programmed conversion of stem cells to the neuronal lineage in vitro. Collectively, the findings of this study reveal prioritization of membrane protein cargo during nutrient-stress-dependent proteome remodelling and identify a Golgi remodelling pathway that requires membrane-embedded receptors.


Assuntos
Autofagia , Complexo de Golgi , Proteínas de Membrana , Nutrientes , Proteoma , Animais , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Retículo Endoplasmático , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Nutrientes/metabolismo , Proteoma/metabolismo , Proteômica
2.
Mol Cell ; 79(6): 950-962.e6, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32726578

RESUMO

Ribosome-associated quality control (RQC) pathways protect cells from toxicity caused by incomplete protein products resulting from translation of damaged or problematic mRNAs. Extensive work in yeast has identified highly conserved mechanisms that lead to degradation of faulty mRNA and partially synthesized polypeptides. Here we used CRISPR-Cas9-based screening to search for additional RQC strategies in mammals. We found that failed translation leads to specific inhibition of translation initiation on that message. This negative feedback loop is mediated by two translation inhibitors, GIGYF2 and 4EHP. Model substrates and growth-based assays established that inhibition of additional rounds of translation acts in concert with known RQC pathways to prevent buildup of toxic proteins. Inability to block translation of faulty mRNAs and subsequent accumulation of partially synthesized polypeptides could explain the neurodevelopmental and neuropsychiatric disorders observed in mice and humans with compromised GIGYF2 function.


Assuntos
Proteínas de Transporte/genética , Fator de Iniciação 4E em Eucariotos/genética , Iniciação Traducional da Cadeia Peptídica , Ribossomos/genética , Animais , Sistemas CRISPR-Cas/genética , Humanos , Camundongos , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional/genética , Controle de Qualidade , RNA Mensageiro/genética , Ubiquitina-Proteína Ligases/genética
3.
Science ; 357(6349): 414-417, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28751611

RESUMO

Ribosome stalling leads to recruitment of the ribosome quality control complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a carboxyl-terminal alanine and threonine (CAT) tail through a noncanonical elongation reaction. Here we examined the role of CAT-tailing in nascent-chain degradation in budding yeast. We found that Ltn1p efficiently accessed only nascent-chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enabled degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates.


Assuntos
Peptídeos/metabolismo , Proteólise , Proteostase , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Elongação da Transcrição Genética , Ubiquitina-Proteína Ligases/metabolismo , Alanina/química , Alanina/metabolismo , Lisina/química , Lisina/metabolismo , Peptídeos/química , Proteínas de Saccharomyces cerevisiae/química , Treonina/química , Treonina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA