RESUMO
BACKGROUND: This study focuses on the role of lysosomal trafficking in prostate cancer, given the essential role of lysosomes in cellular homoeostasis. METHODS: Lysosomal motility was evaluated using confocal laser scanning microscopy of LAMP-1-transfected prostate cells and spot-tracking analysis. Expression of lysosomal trafficking machinery was evaluated in patient cohort databases and through immunohistochemistry on tumour samples. The roles of vesicular trafficking machinery were evaluated through over-expression and siRNA. The effects of R1881 treatment on lysosome vesicular trafficking was evaluated by RNA sequencing, protein quantification and fixed- and live-cell microscopy. RESULTS: Altered regulation of lysosomal trafficking genes/proteins was observed in prostate cancer tissue, with significant correlations for co-expression of vesicular trafficking machinery in Gleason patterns. The expression of trafficking machinery was associated with poorer patient outcomes. R1881 treatment induced changes in lysosomal distribution, number, and expression of lysosomal vesicular trafficking machinery in hormone-sensitive prostate cancer cells. Manipulation of genes involved in lysosomal trafficking events induced changes in lysosome positioning and cell phenotype, as well as differential effects on cell migration, in non-malignant and prostate cancer cells. CONCLUSIONS: These findings provide novel insights into the altered regulation and functional impact of lysosomal vesicular trafficking in prostate cancer pathogenesis.
Assuntos
Progressão da Doença , Lisossomos , Neoplasias da Próstata , Humanos , Masculino , Lisossomos/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Transporte ProteicoRESUMO
Neurobiological research relies heavily on imaging techniques, such as fluorescence microscopy, to understand neurological function and disease processes. However, the number and variety of fluorescent probes available for ex vivo tissue section imaging limits the advance of research in the field. In this review, we outline the current range of fluorescent probes that are available to researchers for ex vivo brain section imaging, including their physical and chemical characteristics, staining targets, and examples of discoveries for which they have been used. This review is organised into sections based on the biological target of the probe, including subcellular organelles, chemical species (e.g., labile metal ions), and pathological phenomenon (e.g., degenerating cells, aggregated proteins). We hope to inspire further development in this field, given the considerable benefits to be gained by the greater availability of suitably sensitive probes that have specificity for important brain tissue targets.
Assuntos
Encéfalo , Corantes Fluorescentes , Corantes Fluorescentes/química , Encéfalo/diagnóstico por imagem , Humanos , Animais , Microscopia de Fluorescência/métodos , Neurociências/métodosRESUMO
Re(I) complexes have potential in biomedical sciences as imaging agents, diagnostics and therapeutics. Thus, it is crucial to understand how Re(I) complexes interact with carrier proteins, like serum albumins. Here, two neutral Re(I) complexes were used (fac-[Re(CO)3 (1,10-phenanthroline)L], in which L is either 4-cyanophenyltetrazolate (1) or 4-methoxycarbonylphenyltetrazole ester (2), to study the interactions with bovine serum albumin (BSA). Spectroscopic measurements, calculations of thermodynamic and Förster resonance energy transfer parameters, as well as molecular modelling, were performed to study differential binding between BSA and complex 1 and 2. Induced-fit docking combined with quantum-polarised ligand docking were employed in what is believed to be a first for a Re(I) complex as a ligand for BSA. Our findings provide a basis for other molecular interaction studies and suggest that subtle functional group alterations at the terminal region of the Re(I) complex have a significant impact on the ability of this class of compounds to interact with BSA.
Assuntos
Soroalbumina Bovina , Sítios de Ligação , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , TermodinâmicaRESUMO
Luminescent metal complexes are a valuable platform for the generation of cell imaging agents. However, many metal complexes are cationic, a factor that can dominate the intracellular accumulation to specific organelles. Neutral Re(I) complexes offer a more attractive platform for the development of bioconjugated imaging agents, where charge cannot influence their intracellular distribution. Herein, we report the synthesis of a neutral complex (ReAlkyne), which was used as a platform for the generation of four carbohydrate-conjugated imaging agents via Cu(I)-catalyzed azide-alkyne cycloaddition. A comprehensive evaluation of the physical and optical properties of each complex is provided, together with a determination of their utility as live cell imaging agents in H9c2 cardiomyoblasts. Unlike their cationic counterparts, many of which localize within mitochondria, these neutral complexes have localized within the endosomal/lysosomal network, a result consistent with examples of dinuclear carbohydrate-appended neutral Re(I) complexes that have been reported. This further demonstrates the utility of these neutral Re(I) complex imaging platforms as viable imaging platforms for the development of bioconjugated cell imaging agents.
Assuntos
Complexos de Coordenação/química , Espaço Intracelular/metabolismo , Imagem Molecular/métodos , Rênio/química , Azidas/química , Linhagem Celular , Miócitos Cardíacos/citologiaRESUMO
Conventional chemotherapies used for breast cancer (BC) treatment are non-selective, attacking both healthy and cancerous cells. Therefore, new technologies that enhance drug efficacy and ameliorate the off-target toxic effects exhibited by currently used anticancer drugs are urgently needed. Here we report the design and synthesis of novel mesoporous silica nanoparticles (MSNs) equipped with the hormonal drug tamoxifen (TAM) to facilitate guidance towards estrogen receptors (ERs) which are upregulated in breast tumours. TAM is linked to the MSNs using a poly-Ê-histidine (PLH) polymer as a pH-sensitive gatekeeper, to ensure efficient delivery of encapsulated materials within the pores. XRD, HR-TEM, DLS, SEM, FT-IR and BET techniques were used to confirm the successful fabrication of MSNs. The MSNs have a high surface area (>1000 m2/g); and a mean particle size of 150 nm, which is an appropriate size to allow the penetration of premature blood vessels surrounding breast tumours. Successful surface functionalization was supported by FT-IR, XPS and TGA techniques, with a grafting ratio of approximately 29%. The outcomes of this preliminary work could be used as practical building blocks towards future formulations.
Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Dióxido de Silício/química , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/química , Composição de Medicamentos , Desenho de Fármacos , Descoberta de Drogas , Liberação Controlada de Fármacos , Feminino , Humanos , Nanopartículas/química , Porosidade , Tamoxifeno/químicaRESUMO
The Buchwald-Hartwig cross-coupling reaction between 4-methylumbelliferone-derived nonaflates with amides, carbamates, and sulfonamides is described. A wide variety of N-substituted 7-amino coumarin analogues was prepared in good to excellent yields. The photophysical properties of aqueous-soluble derivatives were determined, and they displayed auxochrome-based variations. Gram-scale synthesis provided an acrylamide analogue, which was used to fabricate a fluorescent poly(2-hydroxylethyl methacrylate) (pHEMA) hydrogel that was resistant to leaching in ultrapure H2O. We envisage that our reported protocol to access 7-amino-4-methylcoumarin derivatives will find use toward the development of new fluorescent coumarin-based probes by researchers in the field.
RESUMO
Breast cancer (BC) is one of the leading causes of death from cancer in women; second only to lung cancer. Tamoxifen (TAM) is a hydrophobic anticancer agent and a selective estrogen modulator (SERM), approved by the FDA for hormone therapy of BC. Despite having striking efficacy in BC therapy, concerns regarding the dose-dependent carcinogenicity of TAM still persist, restricting its therapeutic applications. Nanotechnology has emerged as one of the most important strategies to solve the issue of TAM toxicity, owing to the ability of nano-enabled-formulations to deliver smaller concentrations of TAM to cancer cells, over a longer period of time. Various TAM-containing-nanosystems have been successfully fabricated to selectively deliver TAM to specific molecular targets found on tumour membranes, reducing unwanted toxic effects. This review begins with an outline of breast cancer, the current treatment options and a history of how TAM has been used as a combatant of BC. A detailed discussion of various nanoformulation strategies used to deliver lower doses of TAM selectively to breast tumours will then follow. Finally, a commentary on future perspectives of TAM being employed as a targeting vector, to guide the delivery of other therapeutic and diagnostic agents selectively to breast tumours will be presented.
Assuntos
Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/farmacologia , Composição de Medicamentos , Tamoxifeno/química , Tamoxifeno/farmacologia , Nanomedicina Teranóstica , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lipossomos , Micelas , Estrutura Molecular , Nanotecnologia , Tamoxifeno/uso terapêuticoRESUMO
A series of structurally amphiphilic biscationic norbornanes have been synthesised as rigidified, low molecular weight peptidomimetics of cationic antimicrobial peptides. A variety of charged hydrophilic functionalities were attached to the norbornane scaffold including aminium, guanidinium, imidazolium and pyridinium moieties. Additionally, a range of hydrophobic groups of differing sizes were incorporated through an acetal linkage. The compounds were evaluated for antibacterial activity against both Gram-negative and Gram-positive bacteria. Activity was observed across the series; the most potent of which exhibited an MIC's ≤ 1 µg mL(-1) against Streptococcus pneumoniae, Enterococcus faecalis and several strains of Staphylococcus aureus, including multi-resistant methicillin resistant (mMRSA), glycopeptide-intermediate (GISA) and vancomycin-intermediate (VISA) S. aureus.
Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Norbornanos/farmacologia , Peptidomiméticos , Antibacterianos/síntese química , Antibacterianos/química , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Norbornanos/síntese química , Norbornanos/química , Relação Estrutura-AtividadeRESUMO
Morpholine motifs have been used extensively as targeting moieties for lysosomes, primarily in fluorescence imaging agents. Traditionally these imaging agents are based on organic molecules which have several shortcomings including small Stokes shifts, short emission lifetimes, and susceptibility to photobleaching. To explore alternative lysosome targeting imaging agents we have used a rhenium based phosphorescent platform which has been previously demonstrated to have an improved Stokes shift, a long lifetime emission, and is highly photostable. Rhenium complexes containing morpholine substituted ligands were designed to accumulate in acidic compartments. Two of the three complexes prepared exhibited bright emission in cells, when incubated at low concentrations (20 µM) and were non-toxic at concentrations as high as 100 µM, making them suitable for live cell imaging. We show that the rhenium complexes are amenable to chemical modification and that the morpholine targeted derivatives can be used for live cell confocal fluorescence imaging of endosomes-lysosomes.
Assuntos
Rênio , Rênio/química , Corantes Fluorescentes/química , Linhagem Celular Tumoral , Lisossomos , MorfolinasRESUMO
The highly heterogenous nature of colorectal cancer can significantly hinder its early and accurate diagnosis, eventually contributing to high mortality rates. The adenoma-carcinoma sequence and serrated polyp-carcinoma sequence are the two most common sequences in sporadic colorectal cancer. Genetic alterations in adenomatous polyposis coli (APC), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and tumour protein 53 (TP53) genes are critical in adenoma-carcinoma sequence, whereas v-Raf murine sarcoma viral oncogene homolog B (BRAF) and MutL Homolog1 (MLH1) are driving oncogenes in the serrated polyp-carcinoma sequence. Sporadic mutations in these genes contribute differently to colorectal cancer pathogenesis by introducing distinct alterations in several signalling pathways that rely on the endosome-lysosome system. Unsurprisingly, the endosome-lysosome system plays a pivotal role in the hallmarks of cancer and contributes to specialised colon function. Thus, the endosome-lysosome system might be distinctively influenced by different mutations and these alterations may contribute to the heterogenous nature of sporadic colorectal cancer. This review highlights potential connections between major sporadic colorectal cancer mutations and the diverse pathogenic mechanisms driven by the endosome-lysosome system in colorectal carcinogenesis.
Assuntos
Adenoma , Carcinoma , Neoplasias Colorretais , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Adenoma/patologiaRESUMO
The diagnosis of prostate cancer using histopathology is reliant on the accurate interpretation of prostate tissue sections. Current standards rely on the assessment of Haematoxylin and Eosin (H&E) staining, which can be difficult to interpret and introduce inter-observer variability. Here, we present a digital pathology atlas and online resource of prostate cancer tissue micrographs for both H&E and the reinterpretation of samples using a novel set of three biomarkers as an interactive tool, where clinicians and scientists can explore high resolution histopathology from various case studies. The digital pathology prostate cancer atlas when used in conjunction with the biomarkers, will assist pathologists to accurately grade prostate cancer tissue samples.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Biomarcadores Tumorais , Neoplasias da Próstata , Sindecana-1 , Neoplasias da Próstata/patologia , Masculino , Humanos , Sindecana-1/análiseRESUMO
Dysregulated production of hydrogen sulphide in the human body has been associated with various diseases including cancer, underlining the importance of accurate detection of this molecule. Here, we report the detection of hydrogen sulphide using fluorescence-emission enhancement of two 1,8-naphthalimide fluorescent probes with an azide moiety in position 4. One probe, serving as a control, featured a methoxyethyl moiety through the imide to evaluate its effectiveness for hydrogen sulphide detection, while the other probe was modified with (3-aminopropyl)triethoxysilane (APTES) to enable direct covalent attachment to an optical fibre tip. We coated the optical fibre tip relatively homogeneously with the APTES-azide fluorophore, as confirmed via x-ray photoelectron spectroscopy (XPS). The absorption and fluorescence responses of the control fluorophore free in PBS were analysed using UV-Vis and fluorescence spectrophotometry, while the fluorescence emission of the APTES-azide fluorophore-coated optical fibres was examined using a simple, low-cost optical fibre-based setup. Both fluorescent probes exhibited a significant increase (more than double the initial value) in fluorescence emission upon the addition of HS- when excited with 405 nm. However, the fluorescence enhancement of the coated optical fibres demonstrated a much faster response time of 2 min (time for the fluorescence intensity to reach 90% of its maximum value) compared to the control fluorophore in solution (30 min). Additionally, the temporal evolution of fluorescence intensity of the fluorophore coated on the optical fibre was studied at two pH values (7.4 and 6.4), demonstrating a reasonable overlap and confirming the compound pH insensitivity within this range. The promising results from this study indicate the potential for developing an optical fibre-based sensing system for HS- detection using the synthesised fluorophore, which could have significant applications in health monitoring and disease detection.
Assuntos
Sulfeto de Hidrogênio , Humanos , Fibras Ópticas , Corantes Fluorescentes/química , Azidas , Espectrometria de FluorescênciaRESUMO
The presence of intraductal carcinoma of the prostate (IDCP) correlates with late-stage disease and poor outcomes for patients with prostatic adenocarcinoma, but the accurate and reliable staging of disease severity remains challenging. Immunohistochemistry (IHC) has been utilised to overcome problems in assessing IDCP morphology, but the current markers have only demonstrated limited utility in characterising the complex biology of this lesion. In a retrospective study of a cohort of patients who had been diagnosed with IDCP, we utilised IHC on radical prostatectomy sections with a biomarker panel of Appl1, Sortilin and Syndecan-1, to interpret different architectural patterns and to explore the theory that IDCP occurs from retrograde spread of high-grade invasive prostatic adenocarcinoma. Cribriform IDCP displayed strong Appl1, Sortilin and Syndecan-1 labelling patterns, while solid IDCP architecture had high intensity Appl1 and Syndecan-1 labelling, but minimal Sortilin labelling. Notably, the expression pattern of the biomarker panel in regions of IDCP was similar to that of adjacent invasive prostatic adenocarcinoma, and also comparable to prostate cancer showing perineural and vascular invasion. The Appl1, Sortilin, and Syndecan-1 biomarker panel in IDCP provides evidence for the model of retrograde spread of invasive prostatic carcinoma into ducts/acini, and supports the inclusion of IDCP into the five-tier Gleason grading system.
Assuntos
Carcinoma Intraductal não Infiltrante , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Carcinoma Intraductal não Infiltrante/patologia , Estudos Retrospectivos , Imuno-Histoquímica , Sindecana-1 , Neoplasias da Próstata/patologia , Gradação de TumoresRESUMO
Cutaneous melanoma is one of the most aggressive forms of skin cancer, with the development of advanced stage disease resulting in a high rate of patient mortality. Accurate diagnosis of melanoma at an early stage is essential to improve patient outcomes, as this enables treatment before the cancer has metastasised. Histopathologic analysis is the current gold standard for melanoma diagnosis, but this can be subjective due to discordance in interpreting the morphological heterogeneity in melanoma and other skin lesions. Immunohistochemistry (IHC) is sometimes employed as an adjunct to conventional histology, but it remains occasionally difficult to distinguish some benign melanocytic lesions and melanoma. Importantly, the complex morphology and lack of specific biomarkers that identify key elements of melanoma pathogenesis can make an accurate confirmation of diagnosis challenging. We review the diagnostic constraints of melanoma heterogeneity and discuss issues with interpreting routine histology and problems with current melanoma markers. Innovative approaches are required to find effective biomarkers to enhance patient management.
Assuntos
Melanoma , Dermatopatias , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Melanoma/diagnóstico , Melanoma/patologia , Dermatopatias/diagnóstico , Imuno-Histoquímica , Diagnóstico Diferencial , Melanoma Maligno CutâneoRESUMO
BACKGROUND: Early diagnosis is the key to improving outcomes for patients with melanoma, and this requires a standardized histological assessment approach. The objective of this survey was to understand the challenges faced by clinicians when assessing melanoma cases, and to provide a perspective for future studies. METHODS: Between April 2022 and February 2023, national and international dermatologists, pathologists, general practitioners, and laboratory managers were invited to participate in a six-question online survey. The data from the survey were assessed using descriptive statistics and qualitative responses. RESULTS: A total of 54 responses were received, with a 51.4% (n = 28) full completion rate. Of the respondents, 96.4% reported ambiguity in their monthly melanoma diagnosis, and 82.1% routinely requested immunohistochemistry (IHC) testing to confirm diagnosis. SOX10 was the most frequently requested marker, and most respondents preferred multiple markers over a single marker. Diagnostic and prognostic tests, as well as therapeutic options and patient management, were all identified as important areas for future research. CONCLUSIONS: The respondents indicated that the use of multiple IHC markers is essential to facilitate diagnostic accuracy in melanoma assessment. Survey responses indicate there is an urgent need to develop new biomarkers for clinical decision making at multiple critical intervention points.
RESUMO
High-grade prostatic intraepithelial neoplasia (HGPIN) is a well-characterised precursor lesion in prostate cancer. The term atypical intraductal proliferations (AIP) describes lesions with features that are far too atypical to be considered HGPIN, yet insufficient to be diagnosed as intraductal carcinoma of the prostate (IDCP). Here, a panel of biomarkers was assessed to provide insights into the biological relationship between IDCP, HGPIN, and AIP and their relevance to current clinicopathological recommendations. Tissue samples from 86 patients with prostate cancer were assessed by routine haematoxylin and eosin staining and immunohistochemistry (IHC) with a biomarker panel (Appl1/Sortilin/Syndecan-1) and a PIN4 cocktail (34ßE12+P63/P504S). Appl1 strongly labelled atypical secretory cells, effectively visualising intraductal lesions. Sortilin labelling was moderate-to-strong in > 70% of cases, while Syndecan-1 was moderate-to-strong in micropapillary HGPIN/AIP lesions (83% cases) versus flat/tufting HGPIN (≤ 20% cases). Distinct biomarker labelling patterns for atypical intraductal lesions of the prostate were observed, including early atypical changes (flat/tufting HGPIN) and more advanced atypical changes (micropapillary HGPIN/AIP). Furthermore, the biomarker panel may be used as a tool to overcome the diagnostic uncertainty surrounding AIP by supporting a definitive diagnosis of IDCP for such lesions displaying the same biomarker pattern as cribriform IDCP.
RESUMO
Cutaneous melanoma is the deadliest form of skin neoplasm and its high mortality rates could be averted by early accurate detection. While the detection of melanoma is currently reliant upon melanin visualisation, research into melanosome biogenesis, as a key driver of pathogenesis, has not yielded technology that can reliably distinguish between atypical benign, amelanotic and melanotic lesions. The endosomal-lysosomal system has important regulatory roles in cancer cell biology, including a specific functional role in melanosome biogenesis. Herein, the involvement of the endosomal-lysosomal system in melanoma was examined by pooled secondary analysis of existing gene expression datasets. A set of differentially expressed endosomal-lysosomal genes was identified in melanoma, which were interconnected by biological function. To illustrate the protein expression of the dysregulated genes, immunohistochemistry was performed on samples from patients with cutaneous melanoma to reveal candidate markers. This study demonstrated the dysregulation of Syntenin-1, Sortilin and Rab25 may provide a differentiating feature between cutaneous melanoma and squamous cell carcinoma, while IGF2R may indicate malignant propensity in these skin cancers.
Assuntos
Carcinoma de Células Escamosas , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas/patologia , Lisossomos/genética , Lisossomos/patologia , Proteínas rab de Ligação ao GTP , Melanoma Maligno CutâneoRESUMO
Prostate cancer (PCa) development and progression relies on the programming of glucose and lipid metabolism, and this involves alterations in androgen receptor expression and signalling. Defining the molecular mechanism that underpins this metabolic programming will have direct significance for patients with PCa who have a poor prognosis. Here we show that there is a dynamic balance between sortilin and syndecan-1, that reports on different metabolic phenotypes. Using tissue microarrays, we demonstrated by immunohistochemistry that sortilin was highly expressed in low-grade cancer, while syndecan-1 was upregulated in high-grade disease. Mechanistic studies in prostate cell lines revealed that in androgen-sensitive LNCaP cells, sortilin enhanced glucose metabolism by regulating GLUT1 and GLUT4, while binding progranulin and lipoprotein lipase (LPL) to limit lipid metabolism. In contrast, in androgen-insensitive PC3 cells, syndecan-1 was upregulated, interacted with LPL and colocalised with ß3 integrin to promote lipid metabolism. In addition, androgen-deprived LNCaP cells had decreased expression of sortilin and reduced glucose-metabolism, but increased syndecan-1 expression, facilitating interactions with LPL and possibly ß3 integrin. We report a hitherto unappreciated molecular mechanism for PCa, which may have significance for disease progression and how androgen-deprivation therapy might promote castration-resistant PCa.
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Próstata , Sindecana-1/genética , Antagonistas de Androgênios , Androgênios , Integrina beta3 , Processos NeoplásicosRESUMO
Gleason scoring is used within a five-tier risk stratification system to guide therapeutic decisions for patients with prostate cancer. This study aimed to compare the predictive performance of routine H&E or biomarker-assisted ISUP (International Society of Urological Pathology) grade grouping for assessing the risk of biochemical recurrence (BCR) and clinical recurrence (CR) in patients with prostate cancer. This retrospective study was an assessment of 114 men with prostate cancer who provided radical prostatectomy samples to the Australian Prostate Cancer Bioresource between 2006 and 2014. The prediction of CR was the primary outcome (median time to CR 79.8 months), and BCR was assessed as a secondary outcome (median time to BCR 41.7 months). The associations of (1) H&E ISUP grade groups and (2) modified ISUP grade groups informed by the Appl1, Sortilin and Syndecan-1 immunohistochemistry (IHC) labelling were modelled with BCR and CR using Cox proportional hazard approaches. IHC-assisted grading was more predictive than H&E for BCR (C-statistic 0.63 vs. 0.59) and CR (C-statistic 0.71 vs. 0.66). On adjusted analysis, IHC-assisted ISUP grading was independently associated with both outcome measures. IHC-assisted ISUP grading using the biomarker panel was an independent predictor of individual BCR and CR. Prospective studies are needed to further validate this biomarker technology and to define BCR and CR associations in real-world cohorts.
RESUMO
Diagnosis and assessment of patients with prostate cancer is dependent on accurate interpretation and grading of histopathology. However, morphology does not necessarily reflect the complex biological changes occurring in prostate cancer disease progression, and current biomarkers have demonstrated limited clinical utility in patient assessment. This study aimed to develop biomarkers that accurately define prostate cancer biology by distinguishing specific pathological features that enable reliable interpretation of pathology for accurate Gleason grading of patients. Online gene expression databases were interrogated and a pathogenic pathway for prostate cancer was identified. The protein expression of key genes in the pathway, including adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (Appl1), Sortilin and Syndecan-1, was examined by immunohistochemistry (IHC) in a pilot study of 29 patients with prostate cancer, using monoclonal antibodies designed against unique epitopes. Appl1, Sortilin, and Syndecan-1 expression was first assessed in a tissue microarray cohort of 112 patient samples, demonstrating that the monoclonal antibodies clearly illustrate gland morphologies. To determine the impact of a novel IHC-assisted interpretation (the utility of Appl1, Sortilin, and Syndecan-1 labelling as a panel) of Gleason grading, versus standard haematoxylin and eosin (H&E) Gleason grade assignment, a radical prostatectomy sample cohort comprising 114 patients was assessed. In comparison to H&E, the utility of the biomarker panel reduced subjectivity in interpretation of prostate cancer tissue morphology and improved the reliability of pathology assessment, resulting in Gleason grade redistribution for 41% of patient samples. Importantly, for equivocal IHC-assisted labelling and H&E staining results, the cancer morphology interpretation could be more accurately applied upon re-review of the H&E tissue sections. This study addresses a key issue in the field of prostate cancer pathology by presenting a novel combination of three biomarkers and has the potential to transform clinical pathology practice by standardising the interpretation of the tissue morphology.