Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 11(7): e1005291, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132202

RESUMO

Akt phosphorylation is a major driver of cell survival, motility, and proliferation in development and disease, causing increased interest in upstream regulators of Akt like mTOR complex 2 (mTORC2). We used genetic disruption of Rictor to impair mTORC2 activity in mouse mammary epithelia, which decreased Akt phosphorylation, ductal length, secondary branching, cell motility, and cell survival. These effects were recapitulated with a pharmacological dual inhibitor of mTORC1/mTORC2, but not upon genetic disruption of mTORC1 function via Raptor deletion. Surprisingly, Akt re-activation was not sufficient to rescue cell survival or invasion, and modestly increased branching of mTORC2-impaired mammary epithelial cells (MECs) in culture and in vivo. However, another mTORC2 substrate, protein kinase C (PKC)-alpha, fully rescued mTORC2-impaired MEC branching, invasion, and survival, as well as branching morphogenesis in vivo. PKC-alpha-mediated signaling through the small GTPase Rac1 was necessary for mTORC2-dependent mammary epithelial development during puberty, revealing a novel role for Rictor/mTORC2 in MEC survival and motility during branching morphogenesis through a PKC-alpha/Rac1-dependent mechanism.


Assuntos
Glândulas Mamárias Animais/embriologia , Neoplasias Mamárias Animais/patologia , Morfogênese/genética , Neuropeptídeos/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Movimento Celular/genética , Sobrevivência Celular/genética , Feminino , Neoplasias Mamárias Animais/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfogênese/fisiologia , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Técnicas de Cultura de Órgãos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Breast Cancer Res ; 19(1): 105, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886748

RESUMO

BACKGROUND: During pregnancy, as the mammary gland prepares for synthesis and delivery of milk to newborns, a luminal mammary epithelial cell (MEC) subpopulation proliferates rapidly in response to systemic hormonal cues that activate STAT5A. While the receptor tyrosine kinase ErbB4 is required for STAT5A activation in MECs during pregnancy, it is unclear how ErbB3, a heterodimeric partner of ErbB4 and activator of phosphatidyl inositol-3 kinase (PI3K) signaling, contributes to lactogenic expansion of the mammary gland. METHODS: We assessed mRNA expression levels by expression microarray of mouse mammary glands harvested throughout pregnancy and lactation. To study the role of ErbB3 in mammary gland lactogenesis, we used transgenic mice expressing WAP-driven Cre recombinase to generate a mouse model in which conditional ErbB3 ablation occurred specifically in alveolar mammary epithelial cells (aMECs). RESULTS: Profiling of RNA from mouse MECs isolated throughout pregnancy revealed robust Erbb3 induction during mid-to-late pregnancy, a time point when aMECs proliferate rapidly and undergo differentiation to support milk production. Litters nursed by ErbB3 KO dams weighed significantly less when compared to litters nursed by ErbB3 WT dams. Further analysis revealed substantially reduced epithelial content, decreased aMEC proliferation, and increased aMEC cell death during late pregnancy. Consistent with the potent ability of ErbB3 to activate cell survival through the PI3K/Akt pathway, we found impaired Akt phosphorylation in ErbB3 KO samples, as well as impaired expression of STAT5A, a master regulator of lactogenesis. Constitutively active Akt rescued cell survival in ErbB3-depleted aMECs, but failed to restore STAT5A expression or activity. Interestingly, defects in growth and survival of ErbB3 KO aMECs as well as Akt phosphorylation, STAT5A activity, and expression of milk-encoding genes observed in ErbB3 KO MECs progressively improved between late pregnancy and lactation day 5. We found a compensatory upregulation of ErbB4 activity in ErbB3 KO mammary glands. Enforced ErbB4 expression alleviated the consequences of ErbB3 ablation in aMECs, while combined ablation of both ErbB3 and ErbB4 exaggerated the phenotype. CONCLUSIONS: These studies demonstrate that ErbB3, like ErbB4, enhances lactogenic expansion and differentiation of the mammary gland during pregnancy, through activation of Akt and STAT5A, two targets crucial for lactation.


Assuntos
Mama/citologia , Mama/metabolismo , Diferenciação Celular/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Lactação/genética , Receptor ErbB-3/genética , Alelos , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Técnicas de Inativação de Genes , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
3.
Breast Cancer Res ; 19(1): 74, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28666462

RESUMO

BACKGROUND: The importance of the mTOR complex 2 (mTORC2) signaling complex in tumor progression is becoming increasingly recognized. HER2-amplified breast cancers use Rictor/mTORC2 signaling to drive tumor formation, tumor cell survival and resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy. Cell motility, a key step in the metastatic process, can be activated by mTORC2 in luminal and triple negative breast cancer cell lines, but its role in promoting metastases from HER2-amplified breast cancers is not yet clear. METHODS: Because Rictor is an obligate cofactor of mTORC2, we genetically engineered Rictor ablation or overexpression in mouse and human HER2-amplified breast cancer models for modulation of mTORC2 activity. Signaling through mTORC2-dependent pathways was also manipulated using pharmacological inhibitors of mTOR, Akt, and Rac. Signaling was assessed by western analysis and biochemical pull-down assays specific for Rac-GTP and for active Rac guanine nucleotide exchange factors (GEFs). Metastases were assessed from spontaneous tumors and from intravenously delivered tumor cells. Motility and invasion of cells was assessed using Matrigel-coated transwell assays. RESULTS: We found that Rictor ablation potently impaired, while Rictor overexpression increased, metastasis in spontaneous and intravenously seeded models of HER2-overexpressing breast cancers. Additionally, migration and invasion of HER2-amplified human breast cancer cells was diminished in the absence of Rictor, or upon pharmacological mTOR kinase inhibition. Active Rac1 was required for Rictor-dependent invasion and motility, which rescued invasion/motility in Rictor depleted cells. Rictor/mTORC2-dependent dampening of the endogenous Rac1 inhibitor RhoGDI2, a factor that correlated directly with increased overall survival in HER2-amplified breast cancer patients, promoted Rac1 activity and tumor cell invasion/migration. The mTORC2 substrate Akt did not affect RhoGDI2 dampening, but partially increased Rac1 activity through the Rac-GEF Tiam1, thus partially rescuing cell invasion/motility. The mTORC2 effector protein kinase C (PKC)α did rescue Rictor-mediated RhoGDI2 downregulation, partially rescuing Rac-guanosine triphosphate (GTP) and migration/motility. CONCLUSION: These findings suggest that mTORC2 uses two coordinated pathways to activate cell invasion/motility, both of which converge on Rac1. Akt signaling activates Rac1 through the Rac-GEF Tiam1, while PKC signaling dampens expression of the endogenous Rac1 inhibitor, RhoGDI2.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Amplificação de Genes , Xenoenxertos , Humanos , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/genética , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo
4.
J Clin Invest ; 118(1): 64-78, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18079969

RESUMO

Overexpression of the receptor tyrosine kinase EPH receptor A2 (EphA2) is commonly observed in aggressive breast cancer and correlates with a poor prognosis. However, while EphA2 has been reported to enhance tumorigenesis, proliferation, and MAPK activation in several model systems, other studies suggest that EphA2 activation diminishes these processes and inhibits the activity of MAPK upon ligand stimulation. In this study, we eliminated EphA2 expression in 2 transgenic mouse models of mammary carcinoma. EphA2 deficiency impaired tumor initiation and metastatic progression in mice overexpressing ErbB2 (also known as Neu) in the mammary epithelium (MMTV-Neu mice), but not in mice overexpressing the polyomavirus middle T antigen in mammary epithelium (MMTV-PyV-mT mice). Histologic and ex vivo analyses of MMTV-Neu mouse mammary epithelium indicated that EphA2 enhanced tumor proliferation and motility. Biochemical analyses revealed that EphA2 formed a complex with ErbB2 in human and murine breast carcinoma cells, resulting in enhanced activation of Ras-MAPK signaling and RhoA GTPase. Additionally, MMTV-Neu, but not MMTV-PyV-mT, tumors were sensitive to therapeutic inhibition of EphA2. These data suggest that EphA2 cooperates with ErbB2 to promote tumor progression in mice and may provide a novel therapeutic target for ErbB2-dependent tumors in humans. Moreover, EphA2 function in tumor progression appeared to depend on oncogene context, an important consideration for the application of therapies targeting EphA2.


Assuntos
Adenocarcinoma/metabolismo , Transformação Celular Neoplásica/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Experimentais/metabolismo , Receptor EphA2/metabolismo , Receptor ErbB-2/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Receptor EphA2/genética , Receptor ErbB-2/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
5.
Mol Cancer Res ; 7(5): 615-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19435813

RESUMO

Vav guanine nucleotide exchange factors modulate changes in cytoskeletal organization through activation of Rho, Rac, and Cdc42 small GTPases. Although Vav1 expression is restricted to the immune system, Vav2 and Vav3 are expressed in several tissues, including highly vascularized organs. Here, we provide the first evidence that Vav2 and Vav3 function within the tumor microenvironment to promote tumor growth, survival, and neovascularization. Host Vav2/3 deficiency reduced microvascular density, as well as tumor growth and/or survival, in transplanted B16 melanoma and Lewis lung carcinoma models in vivo. These defects were due in part to Vav2/3 deficiency in endothelial cells. Vav2/3-deficient endothelial cells displayed reduced migration in response to tumor cells in coculture migration assays, and failed to incorporate into tumor vessels and enhance tumor volume in tumor-endothelial cotransplantation experiments. These data suggest that Vav2/3 guanine nucleotide exchange factors play a critical role in host-mediated tumor progression and angiogenesis, particularly in tumor endothelium.


Assuntos
Neoplasias Experimentais/patologia , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas c-vav/fisiologia , Animais , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Melanoma Experimental/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/fisiopatologia , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas c-vav/deficiência , Proteínas Proto-Oncogênicas c-vav/genética , Transplante Homólogo , Carga Tumoral , Fator de von Willebrand/metabolismo
6.
Mol Cancer Ther ; 19(12): 2454-2464, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33033174

RESUMO

Although new drug discoveries are revolutionizing cancer treatments, repurposing existing drugs would accelerate the timeline and lower the cost for bringing treatments to cancer patients. Our goal was to repurpose CPI211, a potent and selective antagonist of the thromboxane A2-prostanoid receptor (TPr), a G-protein-coupled receptor that regulates coagulation, blood pressure, and cardiovascular homeostasis. To identify potential new clinical indications for CPI211, we performed a phenome-wide association study (PheWAS) of the gene encoding TPr, TBXA2R, using robust deidentified health records and matched genomic data from more than 29,000 patients. Specifically, PheWAS was used to identify clinical manifestations correlating with a TBXA2R single-nucleotide polymorphism (rs200445019), which generates a T399A substitution within TPr that enhances TPr signaling. Previous studies have correlated 200445019 with chronic venous hypertension, which was recapitulated by this PheWAS analysis. Unexpectedly, PheWAS uncovered an rs200445019 correlation with cancer metastasis across several cancer types. When tested in several mouse models of metastasis, TPr inhibition using CPI211 potently blocked spontaneous metastasis from primary tumors, without affecting tumor cell proliferation, motility, or tumor growth. Further, metastasis following intravenous tumor cell delivery was blocked in mice treated with CPI211. Interestingly, TPr signaling in vascular endothelial cells induced VE-cadherin internalization, diminished endothelial barrier function, and enhanced transendothelial migration by tumor cells, phenotypes that were decreased by CPI211. These studies provide evidence that TPr signaling promotes cancer metastasis, supporting the study of TPr inhibitors as antimetastatic agents and highlighting the use of PheWAS as an approach to accelerate drug repurposing.


Assuntos
Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Estudo de Associação Genômica Ampla/métodos , Receptores de Tromboxanos/antagonistas & inibidores , Receptores de Tromboxanos/genética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Tromboxanos/metabolismo
7.
Oncotarget ; 10(52): 5389-5402, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31595181

RESUMO

Cancers often overexpress anti-apoptotic Bcl-2 proteins for cell death evasion, a recognized hallmark of cancer progression. While estrogen receptor (ER)-α+ breast cancers express high levels of three anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-xL, and Mcl-1), pharmacological inhibition of Bcl-2 and/or Bcl-xL fails to induce cell death in ERα+ breast cancer cell lines, due to rapid and robust Mcl-1 upregulation. The mechanisms of acute Mcl-1 upregulation in response to Bcl-2/Bcl-xL inhibition remain undefined in in ERα+ breast cancers. We report here that blockade of Bcl-2 or Bcl-xL, alone or together, rapidly induced mTOR signaling in ERα+ breast cancer cells, rapidly increasing cap-dependent Mcl-1 translation. Cells treated with a pharmacological inhibitor of cap-dependent translation, or with the mTORC1 inhibitor RAD001/everolimus, displayed reduced protein levels of Mcl-1 under basal conditions, and failed to upregulate Mcl-1 protein expression following treatment with ABT-263, a pharmacological inhibitor of Bcl-2 and Bcl-xL. Although treatment with ABT-263 alone did not sustain apoptosis in tumor cells in culture or in vivo, ABT-263 plus RAD001 increased apoptosis to a greater extent than either agent used alone. Similarly, combined use of the selective Mcl-1 inhibitor VU661013 with ABT-263 resulted in tumor cell apoptosis and diminished tumor growth in vivo. These findings suggest that rapid Mcl-1 translation drives ABT-263 resistance, but can be combated directly using emerging Mcl-1 inhibitors, or indirectly through existing and approved mTOR inhibitors.

8.
Cancer Res ; 79(1): 171-182, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30413412

RESUMO

Efferocytosis is the process by which apoptotic cells are cleared from tissue by phagocytic cells. The removal of apoptotic cells prevents them from undergoing secondary necrosis and releasing their inflammation-inducing intracellular contents. Efferocytosis also limits tissue damage by increasing immunosuppressive cytokines and leukocytes and maintains tissue homeostasis by promoting tolerance to antigens derived from apoptotic cells. Thus, tumor cell efferocytosis following cytotoxic cancer treatment could impart tolerance to tumor cells evading treatment-induced apoptosis with deleterious consequences in tumor residual disease. We report here that efferocytosis cleared apoptotic tumor cells in residual disease of lapatinib-treated HER2+ mammary tumors in MMTV-Neu mice, increased immunosuppressive cytokines, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). Blockade of efferocytosis induced secondary necrosis of apoptotic cells, but failed to prevent increased tumor MDSCs, Treg, and immunosuppressive cytokines. We found that efferocytosis stimulated expression of IFN-γ, which stimulated the expression of indoleamine-2,3-dioxegenase (IDO) 1, an immune regulator known for driving maternal-fetal antigen tolerance. Combined inhibition of efferocytosis and IDO1 in tumor residual disease decreased apoptotic cell- and necrotic cell-induced immunosuppressive phenotypes, blocked tumor metastasis, and caused tumor regression in 60% of MMTV-Neu mice. This suggests that apoptotic and necrotic tumor cells, via efferocytosis and IDO1, respectively, promote tumor 'homeostasis' and progression. SIGNIFICANCE: These findings show in a model of HER2+ breast cancer that necrosis secondary to impaired efferocytosis activates IDO1 to drive immunosuppression and tumor progression.


Assuntos
Apoptose , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Mamárias Experimentais/patologia , Necrose , Linfócitos T Reguladores/patologia , c-Mer Tirosina Quinase/metabolismo , Animais , Antineoplásicos/farmacologia , Feminino , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Lapatinib/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Fagocitose , Receptor ErbB-2/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/imunologia , c-Mer Tirosina Quinase/genética
9.
Cancer Res ; 66(21): 10315-24, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17079451

RESUMO

Ephrin-A1, the prototypic ligand for EphA receptor tyrosine kinases, is overexpressed in vascularized tumors relative to normal tissue. Moreover, ephrin-A1-Fc fusion proteins induce endothelial cell sprouting, migration, and assembly in vitro, and s.c. vascular remodeling in vivo. Based on these data, we hypothesized that native, membrane-bound ephrin-A1 regulates tumor angiogenesis and progression. We tested this hypothesis using a transplantable mouse mammary tumor model. Small interfering RNA-mediated ephrin-A1 knockdown in metastatic mammary tumor cells significantly diminishes lung metastasis without affecting tumor volume, invasion, intravasation, or lung colonization upon i.v. injection in vivo. Ephrin-A1 knockdown reduced tumor-induced endothelial cell migration in vitro and microvascular density in vivo. Conversely, overexpression of ephrin-A1 in nonmetastatic mammary tumor cells elevated microvascular density and vascular recruitment. Overexpression of ephrin-A1 elevated wild-type but not EphA2-deficient endothelial cell migration toward tumor cells, suggesting that activation of EphA2 on endothelial cells is one mechanism by which ephrin-A1 regulates angiogenesis. Furthermore, ephrin-A1 knockdown diminished, whereas overexpression of ephrin-A1 elevated, vascular endothelial growth factor (VEGF) levels in tumor cell-conditioned medium, suggesting that ephrin-A1-mediated modulation of the VEGF pathway is another mechanism by which membrane-tethered ephrin-A1 regulates angiogenic responses from initially distant host endothelium. These data suggest that ephrin-A1 is a proangiogenic signal, regulating VEGF expression and facilitating angiogenesis-dependent metastatic spread.


Assuntos
Adenocarcinoma/irrigação sanguínea , Efrina-A1/fisiologia , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neovascularização Patológica/etiologia , Receptores da Família Eph/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Adenocarcinoma/secundário , Animais , Movimento Celular , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica
10.
Comp Med ; 68(4): 256-260, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30017019

RESUMO

Female nude mice (J:NU-Foxn1nu; age, 6 wk) were injected with 1 million MCF7 human breast cancer cells in the fourth mammary fat pads and received a 21-d sustained-release estrogen pellet (0.25 mg) subcutaneously in the dorsum of the neck. All mice were maintained in sterile housing and provided sterile water and irradiated rodent chow. Approximately 6 wk after implantation, 4 of the 30 mice showed clinical signs of depression and dehydration. The 2 animals most severely affected were euthanized and presented for necropsy. The urinary bladders of these animals were distended with variable sized white, opaque uroliths. Urinalysis revealed coccal bacteria, erythrocytes, neutrophils and struvite crystals. Urine cultures from both necropsied animals grew heavy, pure growths of Staphylococcus xylosus. The organism was sensitive to all antibiotics tested except erythromycin (intermediate). Analysis of the uroliths revealed 100% struvite composition. Remaining mice in the study were evaluated clinically for hydration status, the ability to urinate, and the presence of palpable stones in the urinary bladder; one additional mouse had a firm, nonpainful bladder (urolithiasis suspected). Given the sensitivity of the organisms cultured from urine samples, the remaining mice were placed on enrofloxacin in the drinking water (0.5 mg/mL). All remaining mice completed the study without further morbidity or mortality. Previous studies have reported the association of estrogen supplementation with urinary bladder pathology, including infection and urolithiasis. Here we present a case of urolithiasis and cystitis in nude mice receiving estrogen supplementation that was associated with Staphylococcus xylosus, which previously was unreported in this context. When assessing these nude mice for urolithiasis, we found that visualizing the stones through the body wall, bladder palpation, and bladder expression were helpful in identifying affected mice.


Assuntos
Cistite/microbiologia , Staphylococcus/isolamento & purificação , Urolitíase/microbiologia , Animais , Cistite/patologia , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Estruvita , Urolitíase/patologia
11.
Cancer Res ; 78(21): 6183-6195, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224377

RESUMO

Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum but have not achieved widespread success in breast cancers, a tumor type considered poorly immunogenic and which harbors a decreased presence of tumor-infiltrating lymphocytes. Approaches that activate innate immunity in breast cancer cells and the tumor microenvironment are of increasing interest, based on their ability to induce immunogenic tumor cell death, type I IFNs, and lymphocyte-recruiting chemokines. In agreement with reports in other cancers, we observe loss, downregulation, or mutation of the innate viral nucleotide sensor retinoic acid-inducible gene I (RIG-I/DDX58) in only 1% of clinical breast cancers, suggesting potentially widespread applicability for therapeutic RIG-I agonists that activate innate immunity. This was tested using an engineered RIG-I agonist in a breast cancer cell panel representing each of three major clinical breast cancer subtypes. Treatment with RIG-I agonist resulted in upregulation and mitochondrial localization of RIG-I and activation of proinflammatory transcription factors STAT1 and NF-κB. RIG-I agonist triggered the extrinsic apoptosis pathway and pyroptosis, a highly immunogenic form of cell death in breast cancer cells. RIG-I agonist also induced expression of lymphocyte-recruiting chemokines and type I IFN, confirming that cell death and cytokine modulation occur in a tumor cell-intrinsic manner. Importantly, RIG-I activation in breast tumors increased tumor lymphocytes and decreased tumor growth and metastasis. Overall, these findings demonstrate successful therapeutic delivery of a synthetic RIG-I agonist to induce tumor cell killing and to modulate the tumor microenvironment in vivo Significance: These findings describe the first in vivo delivery of RIG-I mimetics to tumors, demonstrating a potent immunogenic and therapeutic effect in the context of otherwise poorly immunogenic breast cancers. Cancer Res; 78(21); 6183-95. ©2018 AACR.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Proteína DEAD-box 58/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Metástase Neoplásica , Neoplasias/metabolismo , Piroptose , Receptores Imunológicos , Transdução de Sinais , Microambiente Tumoral
12.
Cell Death Dis ; 9(2): 21, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343814

RESUMO

Estrogen receptor-α positive (ERα+) breast cancer accounts for approximately 70-80% of the nearly 25,0000 new cases of breast cancer diagnosed in the US each year. Endocrine-targeted therapies (those that block ERα activity) serve as the first line of treatment in most cases. Despite the proven benefit of endocrine therapies, however, ERα+ breast tumors can develop resistance to endocrine therapy, causing disease progression or relapse, particularly in the metastatic setting. Anti-apoptotic Bcl-2 family proteins enhance breast tumor cell survival, often promoting resistance to targeted therapies, including endocrine therapies. Herein, we investigated whether blockade of anti-apoptotic Bcl-2 family proteins could sensitize luminal breast cancers to anti-estrogen treatment. We used long-term estrogen deprivation (LTED) of human ERα+ breast cancer cell lines, an established model of sustained treatment with and acquired resistance to aromatase inhibitors (AIs), in combination with Bcl-2/Bcl-xL inhibition (ABT-263), finding that ABT-263 induced only limited tumor cell killing in LTED-selected cells in culture and in vivo. Interestingly, expression and activity of the Bcl-2-related factor Mcl-1 was increased in LTED cells. Genetic Mcl-1 ablation induced apoptosis in LTED-selected cells, and potently increased their sensitivity to ABT-263. Increased expression and activity of Mcl-1 was similarly seen in clinical breast tumor specimens treated with AI + the selective estrogen receptor downregulator fulvestrant. Delivery of Mcl-1 siRNA loaded into polymeric nanoparticles (MCL1 si-NPs) decreased Mcl-1 expression in LTED-selected and fulvestrant-treated cells, increasing tumor cell death and blocking tumor cell growth. These findings suggest that Mcl-1 upregulation in response to anti-estrogen treatment enhances tumor cell survival, decreasing response to therapeutic treatments. Therefore, strategies blocking Mcl-1 expression or activity used in combination with endocrine therapies would enhance tumor cell death.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Antagonistas de Estrogênios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Fulvestranto/farmacologia , Marcação de Genes , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Receptores de Estrogênio/metabolismo , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteína bcl-X/metabolismo
13.
Cancer Res ; 78(7): 1845-1858, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358172

RESUMO

Small-molecule inhibitors of the mTORC2 kinase (torkinibs) have shown efficacy in early clinical trials. However, the torkinibs under study also inhibit the other mTOR-containing complex mTORC1. While mTORC1/mTORC2 combined inhibition may be beneficial in cancer cells, recent reports describe compensatory cell survival upon mTORC1 inhibition due to loss of negative feedback on PI3K, increased autophagy, and increased macropinocytosis. Genetic models suggest that selective mTORC2 inhibition would be effective in breast cancers, but the lack of selective small-molecule inhibitors of mTORC2 have precluded testing of this hypothesis to date. Here we report the engineering of a nanoparticle-based RNAi therapeutic that can effectively silence the mTORC2 obligate cofactor Rictor. Nanoparticle-based Rictor ablation in HER2-amplified breast tumors was achieved following intratumoral and intravenous delivery, decreasing Akt phosphorylation and increasing tumor cell killing. Selective mTORC2 inhibition in vivo, combined with the HER2 inhibitor lapatinib, decreased the growth of HER2-amplified breast cancers to a greater extent than either agent alone, suggesting that mTORC2 promotes lapatinib resistance, but is overcome by mTORC2 inhibition. Importantly, selective mTORC2 inhibition was effective in a triple-negative breast cancer (TNBC) model, decreasing Akt phosphorylation and tumor growth, consistent with our findings that RICTOR mRNA correlates with worse outcome in patients with basal-like TNBC. Together, our results offer preclinical validation of a novel RNAi delivery platform for therapeutic gene ablation in breast cancer, and they show that mTORC2-selective targeting is feasible and efficacious in this disease setting.Significance: This study describes a nanomedicine to effectively inhibit the growth regulatory kinase mTORC2 in a preclinical model of breast cancer, targeting an important pathogenic enzyme in that setting that has been undruggable to date. Cancer Res; 78(7); 1845-58. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Lapatinib/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas , RNA Interferente Pequeno/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Receptor ErbB-2/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
14.
Mol Cancer Res ; 15(3): 259-268, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28039357

RESUMO

An estimated 40,000 deaths will be attributed to breast cancer in 2016, underscoring the need for improved therapies. Evading cell death is a major hallmark of cancer, driving tumor progression and therapeutic resistance. To evade apoptosis, cancers use antiapoptotic Bcl-2 proteins to bind to and neutralize apoptotic activators, such as Bim. Investigation of antiapoptotic Bcl-2 family members in clinical breast cancer datasets revealed greater expression and more frequent gene amplification of MCL1 as compared with BCL2 or BCL2L1 (Bcl-xL) across three major molecular breast cancer subtypes, Luminal (A and B), HER2-enriched, and Basal-like. While Mcl-1 protein expression was elevated in estrogen receptor α (ERα)-positive and ERα-negative tumors as compared with normal breast, Mcl-1 staining was higher in ERα+ tumors. Targeted Mcl-1 blockade using RNAi increased caspase-mediated cell death in ERα+ breast cancer cells, resulting in sustained growth inhibition. In contrast, combined blockade of Bcl-2 and Bcl-xL only transiently induced apoptosis, as cells rapidly acclimated through Mcl-1 upregulation and enhanced Mcl-1 activity, as measured in situ using Mcl-1/Bim proximity ligation assays. Importantly, MCL1 gene expression levels correlated inversely with sensitivity to pharmacologic Bcl-2/Bcl-xL inhibition in luminal breast cancer cells, whereas no relationship was seen between the gene expression of BCL2 or BCL2L1 and sensitivity to Bcl-2/Bcl-xL inhibition. These results demonstrate that breast cancers rapidly deploy Mcl-1 to promote cell survival, particularly when challenged with blockade of other Bcl-2 family members, warranting the continued development of Mcl-1-selective inhibitors for targeted tumor cell killing.Implications: Mcl-1 levels predict breast cancer response to inhibitors targeting other Bcl-2 family members, and demonstrate the key role played by Mcl-1 in resistance to this drug class. Mol Cancer Res; 15(3); 259-68. ©2016 AACR.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteína bcl-X/antagonistas & inibidores , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sulfonamidas/farmacologia , Proteína bcl-X/biossíntese , Proteína bcl-X/genética
15.
FASEB J ; 19(13): 1884-6, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16166198

RESUMO

EphA2 belongs to a unique family of receptor tyrosine kinases that play critical roles in development and disease. Since EphA2 is required for ephrin-A1 ligand-induced vascular remodeling and is overexpressed in a variety of vascularized human adenocarcinomas, we assessed tumor angiogenesis and metastatic progression in EphA2-deficient host animals. 4T1 metastatic mammary adenocarcinoma cells transplanted subcutaneously and orthotopically into EphA2-deficient female mice displayed decreased tumor volume, tumor cell survival, microvascular density, and lung metastasis relative to tumor-bearing littermate controls. To determine if the phenotype in EphA2-deficient mice was endothelial cell intrinsic, we also analyzed endothelial cells isolated from EphA2-deficient animals for their ability to incorporate into tumor vessels in vivo, as well as to migrate in response to tumor-derived signals in vitro. EphA2-deficient endothelial cells displayed impaired survival and failed to incorporate into tumor microvessels in vivo, and displayed impaired tumor-mediated migration in vitro relative to controls. These data suggest that host EphA2 receptor tyrosine kinase function is required in the tumor microenvironment for tumor angiogenesis and metastatic progression.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Mamárias Animais/irrigação sanguínea , Receptor EphA2/genética , Receptor EphA2/fisiologia , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Transplante de Células , Colágeno/química , Progressão da Doença , Combinação de Medicamentos , Endotélio Vascular/patologia , Efrina-A1/metabolismo , Feminino , Marcação In Situ das Extremidades Cortadas , Óperon Lac , Laminina/química , Ligantes , Pulmão/patologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Microcirculação , Microscopia de Fluorescência , Modelos Biológicos , Modelos Estatísticos , Mutação , Metástase Neoplásica , Transplante de Neoplasias , Neovascularização Patológica , Oxigênio/metabolismo , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Proteoglicanas/química , Receptores da Família Eph/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
Cancer Res ; 76(16): 4752-64, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197158

RESUMO

HER2 overexpression drives Akt signaling and cell survival and HER2-enriched breast tumors have a poor outcome when Akt is upregulated. Akt is activated by phosphorylation at T308 via PI3K and S473 via mTORC2. The importance of PI3K-activated Akt signaling is well documented in HER2-amplified breast cancer models, but the significance of mTORC2-activated Akt signaling in this setting remains uncertain. We report here that the mTORC2 obligate cofactor Rictor is enriched in HER2-amplified samples, correlating with increased phosphorylation at S473 on Akt. In invasive breast cancer specimens, Rictor expression was upregulated significantly compared with nonmalignant tissues. In a HER2/Neu mouse model of breast cancer, genetic ablation of Rictor decreased cell survival and phosphorylation at S473 on Akt, delaying tumor latency, penetrance, and burden. In HER2-amplified cells, exposure to an mTORC1/2 dual kinase inhibitor decreased Akt-dependent cell survival, including in cells resistant to lapatinib, where cytotoxicity could be restored. We replicated these findings by silencing Rictor in breast cancer cell lines, but not silencing the mTORC1 cofactor Raptor (RPTOR). Taken together, our findings establish that Rictor/mTORC2 signaling drives Akt-dependent tumor progression in HER2-amplified breast cancers, rationalizing clinical investigation of dual mTORC1/2 kinase inhibitors and developing mTORC2-specific inhibitors for use in this setting. Cancer Res; 76(16); 4752-64. ©2016 AACR.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte/metabolismo , Complexos Multiproteicos/metabolismo , Receptor ErbB-2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Western Blotting , Neoplasias da Mama/mortalidade , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais/fisiologia , Análise Serial de Tecidos
17.
Sci Transl Med ; 8(334): 334ra53, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27075627

RESUMO

Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.


Assuntos
Cromossomos Humanos Par 9/genética , Amplificação de Genes , Loci Gênicos , Janus Quinase 2/genética , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estudos de Coortes , Feminino , Técnicas de Silenciamento de Genes , Humanos , Pessoa de Meia-Idade , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
18.
Toxicol Sci ; 88(2): 340-5, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16150884

RESUMO

The azoxymethane (AOM) model has been widely used to investigate the pathology and genetics of colorectal cancer in rodents. However, there has been wide variation in treatment regimes, making it difficult to compare across studies. Consequently, standardizing AOM treatment and identifying sources of experimental variation would allow better comparisons across studies. In order to establish an optimal dosing regime for detecting experiment-dependent differences in tumorigenesis, we performed a dose curve analysis using AKR/J, SWR/J, and A/J mouse strains previously reported to vary widely in susceptibility to AOM. Although intraperitoneal or subcutaneous administration, but not in utero exposure, resulted in similar levels of tumor induction, significant dose- and strain-dependent effects of AOM were observed. No sex-dependent differences were observed. Increasing the number of treatments uncovered a significant strain-dependent effect on tumor promotion, independent of susceptibility to tumor initiation. Similarly, we used C57BL/6J and DBA/2J intercrosses to demonstrate that small diet modifications can significantly alter AOM-induced tumorigenesis in a background-dependent manner. These results provide experimental support for a standardized AOM treatment and for the importance of controlling both genetic and non-genetic factors when using this model.


Assuntos
Adenocarcinoma/induzido quimicamente , Azoximetano/toxicidade , Carcinógenos/toxicidade , Neoplasias Colorretais/induzido quimicamente , Predisposição Genética para Doença , Projetos de Pesquisa/normas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Azoximetano/administração & dosagem , Carcinógenos/administração & dosagem , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Cruzamentos Genéticos , Dieta , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Gravidez , Especificidade da Espécie
19.
J Clin Invest ; 124(11): 4737-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25250573

RESUMO

Breast cancers that occur in women 2-5 years postpartum are more frequently diagnosed at metastatic stages and correlate with poorer outcomes compared with breast cancers diagnosed in young, premenopausal women. The molecular mechanisms underlying the malignant severity associated with postpartum breast cancers (ppBCs) are unclear but relate to stromal wound-healing events during postpartum involution, a dynamic process characterized by widespread cell death in milk-producing mammary epithelial cells (MECs). Using both spontaneous and allografted mammary tumors in fully immune-competent mice, we discovered that postpartum involution increases mammary tumor metastasis. Cell death was widespread, not only occurring in MECs but also in tumor epithelium. Dying tumor cells were cleared through receptor tyrosine kinase MerTK-dependent efferocytosis, which robustly induced the transcription of genes encoding wound-healing cytokines, including IL-4, IL-10, IL-13, and TGF-ß. Animals lacking MerTK and animals treated with a MerTK inhibitor exhibited impaired efferocytosis in postpartum tumors, a reduction of M2-like macrophages but no change in total macrophage levels, decreased TGF-ß expression, and a reduction of postpartum tumor metastasis that was similar to the metastasis frequencies observed in nulliparous mice. Moreover, TGF-ß blockade reduced postpartum tumor metastasis. These data suggest that widespread cell death during postpartum involution triggers efferocytosis-induced wound-healing cytokines in the tumor microenvironment that promote metastatic tumor progression.


Assuntos
Neoplasias Pulmonares/secundário , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Animais , Apoptose , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Masculino , Glândulas Mamárias Animais/fisiopatologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Transgênicos , Transplante de Neoplasias , Fagocitose , Período Pós-Parto , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Carga Tumoral , Regulação para Cima , c-Mer Tirosina Quinase
20.
Cancer Res ; 73(20): 6164-74, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24130112

RESUMO

Abnormal cellular metabolism is a hallmark of cancer, yet there is an absence of quantitative methods to dynamically image this powerful cellular function. Optical metabolic imaging (OMI) is a noninvasive, high-resolution, quantitative tool for monitoring cellular metabolism. OMI probes the fluorescence intensities and lifetimes of the autofluorescent metabolic coenzymes reduced NADH and flavin adenine dinucleotide. We confirm that OMI correlates with cellular glycolytic levels across a panel of human breast cell lines using standard assays of cellular rates of glucose uptake and lactate secretion (P < 0.05, r = 0.89). In addition, OMI resolves differences in the basal metabolic activity of untransformed from malignant breast cells (P < 0.05) and between breast cancer subtypes (P < 0.05), defined by estrogen receptor and/or HER2 expression or absence. In vivo OMI is sensitive to metabolic changes induced by inhibition of HER2 with the antibody trastuzumab (herceptin) in HER2-overexpressing human breast cancer xenografts in mice. This response was confirmed with tumor growth curves and stains for Ki67 and cleaved caspase-3. OMI resolved trastuzumab-induced changes in cellular metabolism in vivo as early as 48 hours posttreatment (P < 0.05), whereas fluorodeoxyglucose-positron emission tomography did not resolve any changes with trastuzumab up to 12 days posttreatment (P > 0.05). In addition, OMI resolved cellular subpopulations of differing response in vivo that are critical for investigating drug resistance mechanisms. Importantly, OMI endpoints remained unchanged with trastuzumab treatment in trastuzumab-resistant xenografts (P > 0.05). OMI has significant implications for rapid cellular-level assessment of metabolic response to molecular expression and drug action, which would greatly accelerate drug development studies.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Imagem Óptica/métodos , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Flavina-Adenina Dinucleotídeo/metabolismo , Glicólise , Humanos , Camundongos , Camundongos Nus , NAD/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA