Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6201, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485959

RESUMO

Globally, pesticides improve crop yields but at great environmental cost, and their overuse has caused resistance. This incurs large financial and production losses but, despite this, very diversified farm management that might delay or prevent resistance is uncommon in intensive farming. We asked farmers to design more diversified cropping strategies aimed at controlling herbicide resistance, and estimated resulting weed densities, profits, and yields compared to prevailing practice. Where resistance is low, it is financially viable to diversify pre-emptively; however, once resistance is high, there are financial and production disincentives to adopting diverse rotations. It is therefore as important to manage resistance before it becomes widespread as it is to control it once present. The diverse rotations targeting high resistance used increased herbicide application frequency and volume, contributing to these rotations' lack of financial viability, and raising concerns about glyphosate resistance. Governments should encourage adoption of diverse rotations in areas without resistance. Where resistance is present, governments may wish to incentivise crop diversification despite the drop in wheat production as it is likely to bring environmental co-benefits. Our research suggests we need long-term, proactive, food security planning and more integrated policy-making across farming, environment, and health arenas.


Assuntos
Herbicidas , Controle de Plantas Daninhas , Controle de Plantas Daninhas/métodos , Resistência a Herbicidas , Produtos Agrícolas , Herbicidas/farmacologia , Glifosato , Agricultura/métodos , Plantas Daninhas
2.
Biol Rev Camb Philos Soc ; 98(4): 1033-1050, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36843247

RESUMO

In light of rapidly expanding road networks worldwide, there is increasing global awareness of the growing amount of mammalian roadkill. However, the ways in which road mortality affects the population dynamics of different species remains largely unclear. We aimed to categorise the demographic parameters in mammalian populations around the world that are directly or indirectly affected by road mortality, as well as identify the most effective study designs for quantifying population-level consequences of road mortality. We conducted a comprehensive systematic review to synthesise literature published between 2000 and 2021 and out of 11,238 unique studies returned, 83 studies were retained comprising 69 mammalian species and 150 populations. A bias towards research-intensive countries and larger mammals was apparent. Although searches were conducted in five languages, all studies meeting the inclusion criteria were in English. Relatively few studies (13.3%) provided relevant demographic context to roadkill figures, hampering understanding of the impacts on population persistence. We categorised five direct demographic parameters affected by road mortality: sex- and age-biased mortality, the percentage of a population killed on roads per year (values up to 50% were reported), the contribution of roadkill to total mortality rates (up to 80%), and roadkill during inter-patch or long-distance movements. Female-biased mortality may be more prevalent than previously recognised and is likely to be critical to population dynamics. Roadkill was the greatest source of mortality for 28% of studied populations and both additive and compensatory mechanisms to roadkill were found to occur, bringing varied challenges to conservation around roads. In addition, intra-specific population differences in demographic effects of road mortality were common. This highlights that the relative importance of road mortality is likely to be context specific as the road configuration and habitat quality surrounding a population can vary. Road ecology studies that collect data on key life parameters, such as age/stage/sex-specific survival and dispersal success, and that use a combination of methods are critical in understanding long-term impacts. Quantifying the demographic impacts of road mortality is an important yet complex consideration for proactive road management.


Assuntos
Ecossistema , Mamíferos , Animais , Feminino , Dinâmica Populacional , Ecologia
3.
Animals (Basel) ; 10(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872180

RESUMO

Transport infrastructure is a pervasive element in modern landscapes and continues to expand to meet the demands of a growing human population and its associated resource consumption. Road-induced mortality is often thought to be a major contributor to the marked declines of European hedgehog populations. This review synthesizes available evidence on the population-level impacts of road mortality and the threat to population viability for the five hedgehog species in Europe. Local and national studies suggest that road mortality can cause significant depletions in population sizes, predominantly removing adult males. Traffic collisions are a probable cause of fragmentation effects, subsequently undermining ecological processes such as dispersal, as well as the genetic variance and fitness of isolated populations. Further studies are necessary to improve population estimates and explicitly examine the consequences of sex- and age-specific mortality rates. Hedgehogs have been reported to use crossing structures, such as road tunnels, yet evaluations of mitigation measures for population survival probability are largely absent. This highlights the need for robust studies that consider population dynamics and genetics in response to mitigation. In light of ongoing declines of hedgehog populations, it is paramount that applied research is prioritised and integrated into a holistic spatial planning process.

4.
Nat Sustain ; 3(1): 63-71, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31942455

RESUMO

Pesticides have underpinned significant improvements in global food security, albeit with associated environmental costs. Currently, the yield benefits of pesticides are threatened as overuse has led to wide-scale evolution of resistance. Yet despite this threat, there are no large-scale estimates of crop yield losses or economic costs due to resistance. Here, we combine national-scale density and resistance data for the weed Alopecurus myosuroides (black-grass) with crop yield maps and a new economic model to estimate that the annual cost of resistance in England is £0.4bn in lost gross profit (2014 prices), and annual wheat yield loss due to resistance is 0.8 million tonnes. A total loss of herbicide control against black-grass would cost £1bn and 3.4 million tonnes of lost wheat yield annually. Worldwide, there are 253 herbicide-resistant weeds, so the global impact of resistance could be enormous. Our research provides an urgent case for national-scale planning to combat further evolution of resistance, and an incentive for policies focused on increasing yields through more sustainable food-production systems rather than relying so heavily on herbicides.

5.
Nat Commun ; 11(1): 4441, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879303

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Commun ; 11(1): 3086, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555156

RESUMO

Intense selection by pesticides and antibiotics has resulted in a global epidemic of evolved resistance. In agriculture and medicine, using mixtures of compounds from different classes is widely accepted as optimal resistance management. However, this strategy may promote the evolution of more generalist resistance mechanisms. Here we test this hypothesis at a national scale in an economically important agricultural weed: blackgrass (Alopecurus myosuroides), for which herbicide resistance is a major economic issue. Our results reveal that greater use of herbicide mixtures is associated with lower levels of specialist resistance mechanisms, but higher levels of a generalist mechanism implicated in enhanced metabolism of herbicides with diverse modes of action. Our results indicate a potential evolutionary trade-off in resistance management, whereby attempts to reduce selection for specialist resistance traits may promote the evolution of generalist resistance. We contend that where specialist and generalist resistance mechanisms co-occur, similar trade-offs will be evident, calling into question the ubiquity of resistance management based on mixtures and combination therapies.


Assuntos
Evolução Molecular , Resistência a Herbicidas , Herbicidas , Poaceae/fisiologia , Controle de Plantas Daninhas , Produtos Agrícolas/fisiologia , Ecologia , Genes de Plantas , Geografia , Mutação , Fenótipo , Plantas Daninhas/fisiologia , Sementes , Regulação para Cima
7.
Pest Manag Sci ; 74(10): 2287-2295, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29024368

RESUMO

BACKGROUND: Because of site-specific effects and outcomes, it is often difficult to know whether a management strategy for the control of pests has worked or not. Population dynamics of pests are typically spatially and temporally variable. Moreover, interventions at the scale of individual fields or farms are essentially unreplicated experiments; a decrease in a target population following management cannot safely be interpreted as success because, for example, it might simply be a poor year for that species. Here, we argue that if large-scale data are available, population models can be used to measure outcomes against the prevailing mean and variance. We apply this approach to the problem of rotational management of the weed Alopecurus myosuroides. RESULTS: We derived density-structured population models for a set of fields that were not subject to rotational management (continuous winter wheat) and another group that were (rotated into spring barley to control A. myosuroides). We used these models to construct means and variances of the outcomes of management for given starting conditions, and to conduct transient growth analysis. We show that, overall, this management strategy is successful in reducing densities of weeds, albeit with considerable variance. However, we also show that one variant (rotation to spring barley along with variable sowing) shows little evidence for additional control. CONCLUSION: Our results suggest that rotational strategies can be effective in the control of this weed, but also that strategies require careful evaluation against a background of spatiotemporal variation. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Plantas Daninhas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Controle de Plantas Daninhas/métodos , Modelos Biológicos , Plantas Daninhas/fisiologia , Poaceae/fisiologia , Dinâmica Populacional , Reino Unido
8.
Nat Ecol Evol ; 2(3): 529-536, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29434350

RESUMO

Repeated use of xenobiotic chemicals has selected for the rapid evolution of resistance, threatening health and food security at a global scale. Strategies for preventing the evolution of resistance include cycling and mixtures of chemicals and diversification of management. We currently lack large-scale studies that evaluate the efficacy of these different strategies for minimizing the evolution of resistance. Here we use a national-scale data set of occurrence of the weed Alopecurus myosuroides (black-grass) in the United Kingdom to address this. Weed densities are correlated with assays of evolved resistance, supporting the hypothesis that resistance is driving weed abundance at a national scale. Resistance was correlated with the frequency of historical herbicide applications, suggesting that evolution of resistance is primarily driven by intensity of exposure to herbicides, but was unrelated directly to other cultural techniques. We find that populations resistant to one herbicide are likely to show resistance to multiple herbicide classes. Finally, we show that the economic costs of evolved resistance are considerable: loss of control through resistance can double the economic costs of weeds. This research highlights the importance of managing threats to food production and healthcare systems using an evolutionarily informed approach in a proactive not reactive manner.


Assuntos
Resistência a Herbicidas , Herbicidas/administração & dosagem , Plantas Daninhas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Plantas Daninhas/fisiologia , Poaceae/fisiologia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA