Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Microbiol Biotechnol ; 101(21): 7945-7960, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28956111

RESUMO

The actinomycete Gordonia polyisoprenivorans strain VH2 is well-known for its ability to efficiently degrade and catabolize natural rubber [poly(cis-1,4-isoprene)]. Recently, a pathway for the catabolism of rubber by strain VH2 was postulated based on genomic data and the analysis of mutants (Hiessl et al. in Appl Environ Microbiol 78:2874-2887, 2012). To further elucidate the degradation pathway of poly(cis-1,4-isoprene), 2-dimensional-polyacrylamide gel electrophoresis was performed. The analysis of the identified protein spots by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry confirmed the postulated intracellular pathway suggesting a degradation of rubber via ß-oxidation. In addition, other valuable information on rubber catabolism of G. polyisoprenivorans strain VH2 (e.g. oxidative stress response) was provided. Identified proteins, which were more abundant in cells grown with rubber than in cells grown with propionate, implied a putative long-chain acyl-CoA-dehydrogenase, a 3-ketoacyl-CoA-thiolase, and an aldehyde dehydrogenase. The amino acid sequence of the latter showed a high similarity towards geranial dehydrogenases. The expression of the corresponding gene was upregulated > 10-fold under poly(cis-1,4-isoprene)-degrading conditions. The putative geranial dehydrogenase and a homolog were purified and used for enzyme assays. Deletion mutants for five aldehyde dehydrogenases were generated, and growth with poly(cis-1,4-isoprene) was investigated. While none of the mutants had an altered phenotype regarding growth with poly(cis-1,4-isoprene) as sole carbon and energy source, purified aldehyde dehydrogenases were able to catalyze the oxidation of oligoisoprene aldehydes indicating an involvement in rubber degradation.


Assuntos
Aldeídos/metabolismo , Bactéria Gordonia/enzimologia , Bactéria Gordonia/metabolismo , Hemiterpenos/metabolismo , Látex/metabolismo , Oxirredutases/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Carbono/metabolismo , Eletroforese em Gel Bidimensional , Metabolismo Energético , Deleção de Genes , Perfilação da Expressão Gênica , Bactéria Gordonia/genética , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/genética , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/metabolismo , Redes e Vias Metabólicas/genética , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
2.
Appl Environ Microbiol ; 82(19): 5969-81, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474711

RESUMO

UNLABELLED: Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE: A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected acyltransferase were studied. As discussed in this paper, and in contrast to many other bacteria, streptomycetes seem to possess a complex metabolic network to synthesize lipids, whereof crucial steps are still largely unknown. This paper therefore provides insights into a range of topics, including extremophile bacteria, the physiology of lipid accumulation, and the biotechnological production of bacterial lipids.


Assuntos
Acil Coenzima A/genética , Proteínas de Bactérias/genética , Diacilglicerol O-Aciltransferase/genética , Genoma Bacteriano , Streptomyces/genética , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Ésteres/metabolismo , Análise de Sequência de DNA , Streptomyces/metabolismo , Transcriptoma
3.
Environ Microbiol ; 16(1): 29-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23981049

RESUMO

Bacteria affiliated in the genus Nocardia are aerobic and Gram-positive actinomycetes that are widely found in aquatic and terrestrial habitats. As occasional pathogens, several of them cause infection diseases called 'nocardiosis' affecting lungs, central nervous system, cutaneous tissues and others. In addition, members of the genus Nocardia exhibit an enormous metabolic versatility. On one side, many secondary metabolites have been isolated from members of this genus that exhibit various biological activities such as antimicrobial, antitumor, antioxidative and immunosuppressive activities. On the other side, many species are capable of degrading or converting aliphatic and aromatic toxic hydrocarbons, natural or synthetic polymers, and other widespread environmental pollutants. Because of these valuable properties and the application potential, Nocardia species have attracted much interest in academia and industry in recent years. A solid basis of genetic tools including a set of shuttle vectors and an efficient electroporation method for further genetic and metabolic engineering studies has been established to conduct efficient research. Associated with the increasing data of nocardial genome sequences, the functional diversity of Nocardia will be much faster and better understood.


Assuntos
Fatores Biológicos/metabolismo , Nocardia/metabolismo , Animais , Biodegradação Ambiental , Fatores Biológicos/química , Fatores Biológicos/farmacologia , Humanos , Nocardia/classificação , Nocardia/genética , Nocardia/isolamento & purificação , Nocardiose/microbiologia , Filogenia
4.
Environ Microbiol ; 16(11): 3370-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245581

RESUMO

Variovorax paradoxus B4 is able to utilize 2-mercaptosuccinate (MS) as sole carbon, sulfur and energy source. The whole genome of V. paradoxus B4 was sequenced, annotated and evaluated with special focus on genomic elements related to MS metabolism. The genome encodes two chromosomes harbouring 5 795 261 and 1 353 255 bp. A total of 6753 putative protein-coding sequences were identified. Based on the genome and in combination with results from previous studies, a putative pathway for the degradation of MS could be postulated. The putative molybdopterin oxidoreductase identified during transposon mutagenesis probably catalyses the conversion of MS first into sulfinosuccinate and then into sulfosuccinate by successive transfer of oxygen atoms. Subsequently, the cleavage of sulfosuccinate yields oxaloacetate and sulfite, while the latter is oxidized to sulfate. The expression of the putative molybdopterin oxidoreductase was induced by MS, but not by gluconate, as confirmed by reverse transcriptase polymerase chain reaction. Further, in silico studies combined with experiments and comparative genomics revealed high metabolic diversity of strain B4. It bears a high potential as plant growth-promoting bacterium and as candidate for degradation and detoxification of xenobiotics and other hardly degradable substances. Additionally, the strain is of special interest for production of polythioesters with sulfur-containing precursors as MS.


Assuntos
Comamonadaceae/genética , Genoma Bacteriano , Tiomalatos/metabolismo , Biofilmes , Biopolímeros/metabolismo , Carbono/metabolismo , Comamonadaceae/metabolismo , Comamonadaceae/fisiologia , Alinhamento de Sequência , Enxofre/metabolismo , Simbiose
5.
Microbiology (Reading) ; 160(Pt 7): 1401-1416, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24739217

RESUMO

Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.


Assuntos
Alcaligenaceae/genética , Genoma Bacteriano/genética , Propionatos/metabolismo , Xenobióticos/metabolismo , Alcaligenaceae/química , Alcaligenaceae/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Cromossomos Bacterianos/genética , Dissulfetos/química , Dissulfetos/metabolismo , Genômica , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutagênese Insercional , Filogenia , Plasmídeos/genética , Polímeros/metabolismo , Propionatos/química , Análise de Sequência de DNA , Especificidade da Espécie , Sulfatos/química , Sulfatos/metabolismo , Tolueno/análogos & derivados , Tolueno/química , Tolueno/metabolismo , Xenobióticos/química
6.
Appl Environ Microbiol ; 80(17): 5231-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928880

RESUMO

Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2-) and ketone (-CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases.


Assuntos
Bactéria Gordonia/enzimologia , Hemiterpenos/metabolismo , Látex/metabolismo , Oxigenases/metabolismo , Borracha/metabolismo , Biotransformação , Cromatografia , Coenzimas/metabolismo , Cobre/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Hidrólise , Oxigênio/metabolismo , Oxigenases/química , Oxigenases/genética , Oxigenases/isolamento & purificação , Polarografia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise Espectral , Temperatura
7.
Appl Environ Microbiol ; 80(13): 3895-907, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747905

RESUMO

The complete genome sequence of Nocardia nova SH22a was determined in light of the remarkable ability of rubber and gutta-percha (GP) degradation of this strain. The genome consists of a circular chromosome of 8,348,532 bp with a G+C content of 67.77% and 7,583 predicted protein-encoding genes. Functions were assigned to 72.45% of the coding sequences. Among them, a large number of genes probably involved in the metabolism of xenobiotics and hardly degradable compounds, as well as genes that participate in the synthesis of polyketide- and/or nonribosomal peptide-type secondary metabolites, were detected. Based on in silico analyses and experimental studies, such as transposon mutagenesis and directed gene deletion studies, the pathways of rubber and GP degradation were proposed and the relationship between both pathways was unraveled. The genes involved include, inter alia, genes participating in cell envelope synthesis (long-chain-fatty-acid-AMP ligase and arabinofuranosyltransferase), ß-oxidation (α-methylacyl-coenzyme A [α-methylacyl-CoA] racemase), propionate catabolism (acyl-CoA carboxylase), gluconeogenesis (phosphoenolpyruvate carboxykinase), and transmembrane substrate uptake (Mce [mammalian cell entry] transporter). This study not only improves our insights into the mechanism of microbial degradation of rubber and GP but also expands our knowledge of the genus Nocardia regarding metabolic diversity.


Assuntos
DNA Bacteriano/genética , Genoma Bacteriano , Guta-Percha/metabolismo , Nocardia/genética , Nocardia/metabolismo , Borracha/metabolismo , Análise de Sequência de DNA , Composição de Bases , Biotransformação , Cromossomos Bacterianos , Biologia Computacional , DNA Bacteriano/química , Deleção de Genes , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutagênese Insercional , Nocardia/isolamento & purificação
8.
Appl Environ Microbiol ; 79(4): 1140-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220954

RESUMO

Nocardia nova SH22a, a bacterium capable of degrading gutta-percha (GP) and natural rubber (NR), was used to investigate the GP degradation mechanism and the relations between the GP and NR degradation pathways. For this strain, a protocol of electroporation was systematically optimized, and an efficiency of up to 4.3 × 10(7) CFU per µg of plasmid DNA was achieved. By applying this optimized protocol to N. nova SH22a, a Tn5096-based transposon mutagenesis library of this bacterium was constructed. Among about 12,000 apramycin-resistant transformants, we identified 76 stable mutants defective in GP or NR utilization. Whereas 10 mutants were specifically defective in GP utilization, the growth of the other 66 mutants was affected on both GP and NR. This indicated that the two degradation pathways are quite similar and share many common steps. The larger number of GP-degrading defective mutants could be explained in one of two ways: either (i) the GP pathway is more complex and harbors more specific steps or (ii) the steps for both pathways are almost identical, but in the case of GP degradation there are fewer enzymes involved in each step. The analysis of transposition loci and genetic studies on interesting genes confirmed the crucial role of an α-methylacyl-coenzyme A racemase in the degradation of both GP and NR. We also demonstrated the probable involvement of enzymes participating in oxidoreduction reactions, ß-oxidation, and the synthesis of complex cell envelope lipids in the degradation of GP.


Assuntos
Guta-Percha/metabolismo , Redes e Vias Metabólicas/genética , Nocardia/metabolismo , Borracha/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroporação , Dados de Sequência Molecular , Mutagênese Insercional , Nocardia/genética , Nocardia/crescimento & desenvolvimento , Plasmídeos , Análise de Sequência de DNA
9.
Appl Environ Microbiol ; 78(8): 2874-87, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327575

RESUMO

The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Látex/metabolismo , Redes e Vias Metabólicas/genética , Borracha/metabolismo , Composição de Bases , Cromossomos Bacterianos , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Genoma Bacteriano , Dados de Sequência Molecular , Mutagênese Insercional , Análise de Sequência de DNA
10.
J Biotechnol ; 209: 85-95, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26073999

RESUMO

The betaproteobacterium Variovorax paradoxus strain TBEA6 is capable of using 3,3'-thiodipropionic acid (TDP) as sole carbon and energy source for growth. This thioether is employed for several industrial applications. It can be applied as precursor for the biotechnical production of polythioesters (PTE), which represent persistent bioplastics. Consequently, the genome of V. paradoxus strain TBEA6 was sequenced. The draft genome sequence comprises approximately 7.2Mbp and 6852 predicted open reading frames. Furthermore, transposon mutagenesis to unravel the catabolism of TDP in strain TBEA6 was performed. Screening of 20,000 mutants mapped the insertions of Tn5::mob in 32 mutants, which all showed no growth with TDP as sole carbon source. Based on the annotated genome sequence together with transposon-induced mutagenesis, defined gene deletions, in silico analyses and comparative genomics, a comprehensive pathway for the catabolism of TDP is proposed: TDP is imported via the tripartite tricarboxcylate transport system and/or the TRAP-type dicarboxylate transport system. The initial cleavage of TDP into 3-hydroxypropionic acid (3HP) and 3-mercaptopropionic acid (3MP), which serves as precursor substrate for PTE synthesis, is most probably performed by the FAD-dependent oxidoreductase Fox. 3HP is presumably catabolized via malonate semialdehyde, whereas 3MP is oxygenated by the 3MP-dioxygenase Mdo yielding 3-sulfinopropionic acid (3SP). Afterwards, 3SP is linked to coenzyme A. The next step is the abstraction of sulfite by a desulfinase, and the resulting propionyl-CoA enters the central metabolism. Sulfite is oxidized to sulfate by the sulfite-oxidizing enzyme SoeABC and is subsequently excreted by the cells by the sulfate exporter Pse.


Assuntos
Betaproteobacteria/genética , Genoma Bacteriano , Propionatos/metabolismo , Análise de Sequência de DNA/métodos , Betaproteobacteria/classificação , Betaproteobacteria/metabolismo , Mutagênese Insercional , Fases de Leitura Aberta , Sulfetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA