Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 463(4): 881-7, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26056941

RESUMO

Activation of inositol-requiring enzyme 1 (IRE1) due to abnormal conditions of the endoplasmic reticulum (ER) is responsible for the cleavage of an unspliced form of X-box binding protein 1 (uXBP1), producing its spliced form (sXBP1). To estimate IRE1 activation, several analytical procedures using green fluorescence protein and firefly luciferase have been developed and applied to clarify the roles of IRE1-XBP1 signaling pathways during development and disease progression. In this study, we established a highly sensitive assay of IRE1 activity using a small luciferase, NanoLuc, which has approximately 100-fold higher activity than firefly luciferase. The NanoLuc reporter, which contained a portion of the spliced region of XBP1 upstream of NanoLuc, was highly sensitive and compatible with several types of cell lines. We found that NanoLuc was secreted into the extracellular space independent of the ER-Golgi pathway. The NanoLuc activity of an aliquot of culture medium from the neuroblastoma-spinal neuron hybrid cell line NSC-34 reflected the toxic stimuli-induced elevation of intracellular activity well. Using this technique, we evaluated the effects of several genetic and pathological factors associated with the onset and progression of amyotrophic lateral sclerosis (ALS) on NanoLuc reporter activity. Under our experimental conditions, inhibition of ER-Golgi transport by the overexpression of mutant Sar1 activated luciferase activity, whereas the co-expression of mutant SOD1 or the C-terminal fragment of TDP-43 (TDP-25) did not. The addition of homocysteine elevated the reporter activity; however, we did not observe any synergistic effect due to the overexpression of the mutant genes described above. Taken together, these data show that our analytical procedure is highly sensitive and convenient for screening useful compounds that modulate IRE1-XBP1 signaling pathways as well as for estimating IRE1 activation in several pathophysiological diseases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Endorribonucleases/metabolismo , Luciferases de Vaga-Lume/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esclerose Lateral Amiotrófica/patologia , Sequência de Bases , Linhagem Celular , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
2.
Mol Cell Biochem ; 405(1-2): 291-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926156

RESUMO

Transmembrane protein 132A (TMEM132A) was first isolated from rat brain using PCR-selected cDNA subtraction, and it was found to be predominantly expressed in the brain. However, the transcriptional regulation of the TMEM132A gene has not been fully characterized. In this study, we characterized the promoter activity of the 880-bp region upstream of the mouse TMEM132A, identifying several putative sites recognized by transcription factors, which are highly conserved between the mouse and human TMEM132A genes. Using four different mouse cell lines (Neuro2a, NSC-34, NIH3T3, and Raw264.7), we first evaluated the intrinsic levels of TMEM132A mRNA and protein expression. Interestingly, TMEM132A mRNA was expressed in all four cell lines, whereas the protein was negligible in Raw264.7 cells even by transfection of TMEM132A gene. Then, we analyzed the TMEM132A promoter activity using serial deleted constructs, finding it was nearly same pattern in all four cell lines. A mutational analysis of the TMEM132A promoter identified a critical region for its activation just upstream of the transcriptional start site. Finally, we investigated the levels of TMEM132A mRNA and protein after exposure to five different neurotoxic stimuli, including thapsigargin, tunicamycin, serum starvation, homocysteine, and hydrogen peroxide. Treatment with thapsigargin, a calcium modulating agent, markedly attenuated the levels of TMEM132A mRNA and protein in NSC-34 cells. These results give new insight into the mechanisms involved in regulating TMEM132A expression, and suggest that several transcriptional and post-transcriptional pathways regulate TMEM132A expression under developmental and pathophysiological conditions.


Assuntos
Proteínas de Membrana/genética , Processamento Pós-Transcricional do RNA/genética , Transcrição Gênica/genética , Animais , Sequência de Bases , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Neurotoxinas/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Mensageiro/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA