Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(51): e2205301119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508661

RESUMO

Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures.


Assuntos
Melatonina , Humanos , Ritmo Circadiano/fisiologia , Opsinas de Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Fatores de Tempo
2.
N Engl J Med ; 382(26): 2514-2523, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32579812

RESUMO

BACKGROUND: The effects on patient safety of eliminating extended-duration work shifts for resident physicians remain controversial. METHODS: We conducted a multicenter, cluster-randomized, crossover trial comparing two schedules for pediatric resident physicians during their intensive care unit (ICU) rotations: extended-duration work schedules that included shifts of 24 hours or more (control schedules) and schedules that eliminated extended shifts and cycled resident physicians through day and night shifts of 16 hours or less (intervention schedules). The primary outcome was serious medical errors made by resident physicians, assessed by intensive surveillance, including direct observation and chart review. RESULTS: The characteristics of ICU patients during the two work schedules were similar, but resident physician workload, described as the mean (±SD) number of ICU patients per resident physician, was higher during the intervention schedules than during the control schedules (8.8±2.8 vs. 6.7±2.2). Resident physicians made more serious errors during the intervention schedules than during the control schedules (97.1 vs. 79.0 per 1000 patient-days; relative risk, 1.53; 95% confidence interval [CI], 1.37 to 1.72; P<0.001). The number of serious errors unitwide were likewise higher during the intervention schedules (181.3 vs. 131.5 per 1000 patient-days; relative risk, 1.56; 95% CI, 1.43 to 1.71). There was wide variability among sites, however; errors were lower during intervention schedules than during control schedules at one site, rates were similar during the two schedules at two sites, and rates were higher during intervention schedules than during control schedules at three sites. In a secondary analysis that was adjusted for the number of patients per resident physician as a potential confounder, intervention schedules were no longer associated with an increase in errors. CONCLUSIONS: Contrary to our hypothesis, resident physicians who were randomly assigned to schedules that eliminated extended shifts made more serious errors than resident physicians assigned to schedules with extended shifts, although the effect varied by site. The number of ICU patients cared for by each resident physician was higher during schedules that eliminated extended shifts. (Funded by the National Heart, Lung, and Blood Institute; ROSTERS ClinicalTrials.gov number, NCT02134847.).


Assuntos
Unidades de Terapia Intensiva Pediátrica/organização & administração , Internato e Residência/organização & administração , Erros Médicos/estatística & dados numéricos , Segurança do Paciente , Admissão e Escalonamento de Pessoal , Tolerância ao Trabalho Programado , Carga de Trabalho , Estudos Cross-Over , Humanos , Erros Médicos/prevenção & controle , Desempenho Psicomotor/fisiologia , Sono , Fatores de Tempo
3.
J Pineal Res ; 73(1): e12805, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35501292

RESUMO

Circadian adaptation to shifted sleep/wake schedules may be facilitated by optimizing the timing, intensity and spectral characteristics of light exposure, which is the principal time cue for mammalian circadian pacemaker, and possibly by strategically timing nonphotic time cues such as exercise. Therefore, circadian phase resetting by light and exercise was assessed in 44 healthy participants (22 females, mean age [±SD] 36.2 ± 9.2 years), who completed 8-day inpatient experiments simulating night shiftwork, which included either an 8 h advance or 8 h delay in sleep/wake schedules. In the advance protocol (n = 18), schedules were shifted either gradually (1.6 h/day across 5 days) or abruptly (slam shift, 8 h in 1 day and maintained across 5 days). Both advance protocols included a dynamic lighting schedule (DLS) with 6.5 h exposure of blue-enriched white light (704 melanopic equivalent daylight illuminance [melEDI] lux) during the day and dimmer blue-depleted light (26 melEDI lux) for 2 h immediately before sleep on the shifted schedule. In the delay protocol (n = 26), schedules were only abruptly delayed but included four different lighting conditions: (1) 8 h continuous room-light control; (2) 8 h continuous blue-enriched light; (3) intermittent (7 × 15 min pulses/8 h) blue-enriched light; (4) 8 h continuous blue-enriched light plus moderate intensity exercise. In the room-light control, participants received dimmer white light for 30 min before bedtime, whereas in the other three delay protocols participants received dimmer blue-depleted light for 30 min before bedtime. Both the slam and gradual advance protocols induced similar shifts in circadian phase (3.28 h ± 0.37 vs. 2.88 h ± 0.31, respectively, p = .43) estimated by the change in the timing of timing of dim light melatonin onset. In the delay protocol, the continuous 8 h blue-enriched exposure induced significantly larger shifts than the room light control (-6.59 h ± 0.43 vs. -4.74 h ± 0.62, respectively, p = .02). The intermittent exposure induced ~60% of the shift (-3.90 h ± 0.62) compared with 8 h blue-enriched continuous light with only 25% of the exposure duration. The addition of exercise to the 8 h continuous blue-enriched light did not result in significantly larger phase shifts (-6.59 h ± 0.43 vs. -6.41 h ± 0.69, p = .80). Collectively, our results demonstrate that, when attempting to adapt to an 8 h overnight work shift, delay shifts are more successful, particularly when accompanied by a DLS with high-melanopic irradiance light stimulus during wake.


Assuntos
Ritmo Circadiano , Melatonina , Adaptação Fisiológica , Adulto , Feminino , Humanos , Iluminação , Pessoa de Meia-Idade , Sono
4.
J Pineal Res ; 73(4): e12826, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35996978

RESUMO

Spaceflight exposes crewmembers to circadian misalignment and sleep loss, which impair cognition and increase the risk of errors and accidents. We compared the effects of an experimental dynamic lighting schedule (DLS) with a standard static lighting schedule (SLS) on circadian phase, self-reported sleep and cognition during a 45-day simulated space mission. Sixteen participants (mean age [±SD] 37.4 ± 6.7 years; 5 F; n = 8/lighting condition) were studied in four-person teams at the NASA Human Exploration Research Analog. Participants were scheduled to sleep 8 h/night on two weekend nights, 5 h/night on five weekday nights, repeated for six 7-day cycles, with scheduled waketime fixed at 7:00 a.m. Compared to the SLS where illuminance and spectrum remained constant during wake (~4000K), DLS increased the illuminance and short-wavelength (blue) content of white light (~6000K) approximately threefold in the main workspace (Level 1), until 3 h before bedtime when illuminance was reduced by ~96% and the blue content also reduced throughout (~4000K × 2 h, ~3000K × 1 h) until bedtime. The average (±SE) urinary 6-sulphatoxymelatonin (aMT6s) acrophase time was significantly later in the SLS (6.22 ± 0.34 h) compared to the DLS (4.76 ± 0.53 h) and more variable in SLS compared to DLS (37.2 ± 3.6 min vs. 28.2 ± 2.4 min, respectively, p = .04). Compared to DLS, self-reported sleep was more frequently misaligned relative to circadian phase in SLS RR: 6.75, 95% CI 1.55-29.36, p = .01), but neither self-reported sleep duration nor latency to sleep was different between lighting conditions. Accuracy in the abstract matching and matrix reasoning tests were significantly better in DLS compared to SLS (false discovery rate-adjusted p ≤ .04). Overall, DLS alleviated the drift in circadian phase typically observed in space analog studies and reduced the prevalence of self-reported sleep episodes occurring at an adverse circadian phase. Our results support incorporating DLS in future missions, which may facilitate appropriate circadian alignment and reduce the risk of sleep disruption.


Assuntos
Iluminação , Melatonina , Humanos , Adulto , Ritmo Circadiano , Autorrelato , Sono , Luz
5.
J Theor Biol ; 509: 110497, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966825

RESUMO

Sleep loss causes decrements in cognitive performance, which increases risks to those in safety-sensitive fields, including medicine and aviation. Mathematical models can be formulated to predict performance decrement in response to sleep loss, with the goal of identifying when an individual may be at highest risk for an accident. This work produces an Ensemble Mixed Effects Model that combines a traditional Linear Mixed Effects (LME) model with a semi-parametric, nonlinear model called Mixed Effects Random Forest (MERF). Using this model, we predict performance on the Psychomotor Vigilance Task (PVT), a test of sustained attention, using biologically motivated features extracted from a dataset containing demographic, sleep, and cognitive test data from 44 healthy participants studied during inpatient sleep loss laboratory experiments. Our Ensemble Mixed Effects Model accurately predicts an individual's trend in PVT performance, and fits the data better than prior published models. The ensemble successfully combines MERF's high rate of peak identification with LME's conservative predictions. We investigate two questions relevant to this model's potential use in operational settings: the tradeoff between additional model features versus ease of collecting these features in real-world settings, and how recent a cognitive task must have been administered to produce strong predictions. This work addresses limitations of previous approaches by developing a predictive model that accounts for interindividual differences and utilizes a nonlinear, semi-parametric method called MERF. We methodologically address the modeling decisions required for this prediction problem, including the choice of cross-validation method. This work is novel in its use of data from a highly-controlled inpatient study protocol that uncouples the influence of the sleep-wake cycle from the endogenous circadian rhythm on the cognitive task being modeled. This uncoupling provides a clearer picture of the model's real-world predictive ability for situations in which people work at different circadian times (e.g., night- or shift-work).


Assuntos
Privação do Sono , Vigília , Atenção , Ritmo Circadiano , Humanos , Desempenho Psicomotor , Sono
6.
J Pineal Res ; 71(2): e12752, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34118084

RESUMO

Shiftwork and circadian disruption are associated with adverse metabolic effects. Therefore, we examined whether clinical biomarkers of metabolic health are under endogenous circadian regulation using a 40 hours constant routine protocol (CR; constant environmental and behavioral conditions) and evaluated the impact of typical daily conditions with periodic sleep and meals (baseline; 8 hours sleep at night, four meals during a 16 hour wake episode) on the phase and amplitude of these rhythms. Additionally, we tested whether these circadian rhythms are reset during simulated shiftwork. Under CR (n = 16 males, mean age ± SD = 23.4 ± 2.3 years), we found endogenous circadian rhythms in cholesterol, HDL and LDL, albumin and total protein, and VLDL and triglyceride. The rhythms were masked under baseline conditions except for cholesterol, which had near-identical phases under both conditions. Resetting of the cholesterol rhythm and Dim Light Melatonin Onset (DLMO) was then tested in a study of simulated shiftwork (n = 25, 14 females, 36.3 ± 8.9 years) across four protocols; two with abrupt 8 hour delay shifts and exposure to either blue-enriched or standard white light; and either an abrupt or gradual 8 hour advance (1.6 hours/day over 5 days) both with exposure to blue-enriched white light. In the delay protocols, the cholesterol rhythm shifted later by -3.7 hours and -4.2 hours, respectively, compared to -6.6 hours and -4.7 hours, for DLMO. There was a significant advance in cholesterol in the abrupt (+5.1 hours) but not the gradual (+2.1 hours) protocol, compared to +3.1 hours and +2.8 hours in DLMO, respectively. Exploratory group analysis comparing the phases of all metabolic biomarkers under both studies showed evidence of phase shifts due to simulated shiftwork. These results show that clinical biomarkers of metabolic health are under endogenous circadian regulation but that the expression of these rhythms is substantially influenced by environmental factors. These rhythms can also be reset, which has implications for understanding how both behavioral changes and circadian shifts due to shiftwork may disrupt metabolic function.


Assuntos
Melatonina , Transtornos do Sono do Ritmo Circadiano , Biomarcadores , Ritmo Circadiano/fisiologia , Feminino , Humanos , Luz , Masculino , Melatonina/metabolismo , Sono/fisiologia
7.
J Pineal Res ; 71(1): e12745, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34050968

RESUMO

The time of dim light melatonin onset (DLMO) is the gold standard for circadian phase assessment in humans, but collection of samples for DLMO is time and resource-intensive. Numerous studies have attempted to estimate circadian phase from actigraphy data, but most of these studies have involved individuals on controlled and stable sleep-wake schedules, with mean errors reported between 0.5 and 1 hour. We found that such algorithms are less successful in estimating DLMO in a population of college students with more irregular schedules: Mean errors in estimating the time of DLMO are approximately 1.5-1.6 hours. We reframed the problem as a classification problem and estimated whether an individual's current phase was before or after DLMO. Using a neural network, we found high classification accuracy of about 90%, which decreased the mean error in DLMO estimation-identifying the time at which the switch in classification occurs-to approximately 1.3 hours. To test whether this classification approach was valid when activity and circadian rhythms are decoupled, we applied the same neural network to data from inpatient forced desynchrony studies in which participants are scheduled to sleep and wake at all circadian phases (rather than their habitual schedules). In participants on forced desynchrony protocols, overall classification accuracy dropped to 55%-65% with a range of 20%-80% for a given day; this accuracy was highly dependent upon the phase angle (ie, time) between DLMO and sleep onset, with the highest accuracy at phase angles associated with nighttime sleep. Circadian patterns in activity, therefore, should be included when developing and testing actigraphy-based approaches to circadian phase estimation. Our novel algorithm may be a promising approach for estimating the onset of melatonin in some conditions and could be generalized to other hormones.


Assuntos
Actigrafia/métodos , Ritmo Circadiano/fisiologia , Melatonina/biossíntese , Redes Neurais de Computação , Fotometria/métodos , Adulto , Feminino , Humanos , Masculino
8.
J Bone Miner Metab ; 37(1): 60-71, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29318392

RESUMO

Although evidence exists for a daily rhythm in bone metabolism, the contribution of factors such as melatonin levels, the light-dark cycle, and the sleep-wake cycle is difficult to differentiate given their highly correlated time courses. To examine these influences on bone resorption, we collected 48-h sequential urine samples under both ambulatory (8-h sleep:16-h wake) and constant routine (CR) (constant wake, posture, nutrition and dim light) conditions from 20 healthy premenopausal women. Urinary 6-sulphatoxymelatonin (aMT6s; ng/h) and the bone resorption marker amino-terminal cross-linked collagen I telopeptide (NTx; bone collagen equivalents nM/h) were assayed and fit by cosinor models to determine significant 24-h rhythms and acrophase. Most participants had significant 24-h aMT6s rhythms during both ambulatory and CR conditions (95 and 85%, respectively), but fewer had significant 24-h NTx rhythms (70 and 70%, respectively). Among individuals with significant rhythms, mean (± SD) aMT6s acrophase times were 3:57 ± 1:50 and 3:43 ± 1:25 h under ambulatory and CR conditions, respectively, and 23:44 ± 5:55 and 3:06 ± 5:15 h, respectively, for NTx. Mean 24-h levels of both aMT6s and NTx were significantly higher during CR compared with ambulatory conditions (p < 0.0001 and p = 0.03, respectively). Menstrual phase (follicular versus luteal) had no impact on aMT6s or NTx timing or 24-h levels. This study confirms an endogenous circadian rhythm in NTx with a night-time peak when measured under CR conditions, but also confirms that environmental factors such as the sleep-wake or light-dark cycles, posture or meal timing affects overall concentrations and peak timing under ambulatory conditions, the significance of which remains unclear.


Assuntos
Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Pré-Menopausa/fisiologia , Adulto , Biomarcadores , Reabsorção Óssea/fisiopatologia , Colágeno Tipo I/metabolismo , Feminino , Humanos , Luz , Peptídeos/metabolismo
9.
J Neurosci ; 37(24): 5885-5899, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28522736

RESUMO

Remyelination of CNS axons by Schwann cells (SCs) is not efficient, in part due to the poor migration of SCs into the adult CNS. Although it is known that migrating SCs avoid white matter tracts, the molecular mechanisms underlying this exclusion have never been elucidated. We now demonstrate that myelin-associated glycoprotein (MAG), a well known inhibitor of neurite outgrowth, inhibits rat SC migration and induces their death via γ-secretase-dependent regulated intramembrane proteolysis of the p75 neurotrophin receptor (also known as p75 cleavage). Blocking p75 cleavage using inhibitor X (Inh X), a compound that inhibits γ-secretase activity before exposing to MAG or CNS myelin improves SC migration and survival in vitro Furthermore, mouse SCs pretreated with Inh X migrate extensively in the demyelinated mouse spinal cord and remyelinate axons. These results suggest a novel role for MAG/myelin in poor SC-myelin interaction and identify p75 cleavage as a mechanism that can be therapeutically targeted to enhance SC-mediated axon remyelination in the adult CNS.SIGNIFICANCE STATEMENT Numerous studies have used Schwann cells, the myelin-making cells of the peripheral nervous system to remyelinate adult CNS axons. Indeed, these transplanted cells successfully remyelinate axons, but unfortunately they do not migrate far and so remyelinate only a few axons in the vicinity of the transplant site. It is believed that if Schwann cells could be induced to migrate further and survive better, they may represent a valid therapy for remyelination. We show that myelin-associated glycoprotein or CNS myelin, in general, inhibit rodent Schwann cell migration and induce their death via cleavage of the neurotrophin receptor p75. Blockade of p75 cleavage using a specific inhibitor significantly improves migration and survival of the transplanted Schwann cells in vivo.


Assuntos
Apoptose/fisiologia , Movimento Celular/fisiologia , Glicoproteína Associada a Mielina/metabolismo , Crescimento Neuronal/fisiologia , Células de Schwann/citologia , Células de Schwann/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Nus , Bainha de Mielina/metabolismo
10.
J Physiol ; 596(11): 2147-2157, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29707782

RESUMO

KEY POINTS: There is assumed to be a monotonic association between melatonin suppression and circadian phase resetting induced by light exposure. We tested the association between melatonin suppression and phase resetting in humans. Sixteen young healthy participants received nocturnal bright light (∼9500 lux) exposure of continuous or intermittent patterns, and different durations ranging from 12 min to 6.5 h. Intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every bright light stimulus in an intermittent exposure pattern induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest that phase shifts and melatonin suppression are functionally independent such that one cannot be used as a proxy measure of the other. ABSTRACT: Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9-day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim-light control (<3 lux; n = 6) or (ii) two 12-min intermittent bright light pulses (IBL) separated by 36 min of darkness (∼9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim-light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15-min pulses with 1.0 h dim-light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase-delay shifts than the dim-light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light-induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other.


Assuntos
Ritmo Circadiano , Luz , Melatonina/metabolismo , Sono/fisiologia , Sono/efeitos da radiação , Adaptação Fisiológica , Adolescente , Adulto , Escuridão , Feminino , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
11.
J Biol Chem ; 290(26): 16343-56, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947372

RESUMO

The adult CNS does not spontaneously regenerate after injury, due in large part to myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo-A, and oligodendrocyte-myelin glycoprotein. All three inhibitors can interact with either the Nogo receptor complex or paired immunoglobulin-like receptor B. A conditioning lesion of the sciatic nerve allows the central processes of dorsal root ganglion (DRG) neurons to spontaneously regenerate in vivo after a dorsal column lesion. After a conditioning lesion, DRG neurons are no longer inhibited by myelin, and this effect is cyclic AMP (cAMP)- and transcription-dependent. Using a microarray analysis, we identified several genes that are up-regulated both in adult DRGs after a conditioning lesion and in DRG neurons treated with cAMP analogues. One gene that was up-regulated under both conditions is metallothionein (MT)-I. We show here that treatment with two closely related isoforms of MT (MT-I/II) can overcome the inhibitory effects of both myelin and MAG for cortical, hippocampal, and DRG neurons. Intrathecal delivery of MT-I/II to adult DRGs also promotes neurite outgrowth in the presence of MAG. Adult DRGs from MT-I/II-deficient mice extend significantly shorter processes on MAG compared with wild-type DRG neurons, and regeneration of dorsal column axons does not occur after a conditioning lesion in MT-I/II-deficient mice. Furthermore, a single intravitreal injection of MT-I/II after optic nerve crush promotes axonal regeneration. Mechanistically, MT-I/II ability to overcome MAG-mediated inhibition is transcription-dependent, and MT-I/II can block the proteolytic activity of α-secretase and the activation of PKC and Rho in response to soluble MAG.


Assuntos
Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Metalotioneína/metabolismo , Regeneração Nervosa , Animais , Sistema Nervoso Central/lesões , Sistema Nervoso Central/fisiopatologia , Feminino , Masculino , Metalotioneína/genética , Camundongos Knockout , Bainha de Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Ratos , Ratos Long-Evans
13.
J Neurosci ; 33(12): 5138-51, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23516280

RESUMO

After CNS injury, axonal regeneration is limited by myelin-associated inhibitors; however, this can be overcome through elevation of intracellular cyclic AMP (cAMP), as occurs with conditioning lesions of the sciatic nerve. This study reports that expression of secretory leukocyte protease inhibitor (SLPI) is strongly upregulated in response to elevation of cAMP. We also show that SLPI can overcome inhibition by CNS myelin and significantly enhance regeneration of transected retinal ganglion cell axons in rats. Furthermore, regeneration of dorsal column axons does not occur after a conditioning lesion in SLPI null mutant mice, indicating that expression of SLPI is required for the conditioning lesion effect. Mechanistically, we demonstrate that SLPI localizes to the nuclei of neurons, binds to the Smad2 promoter, and reduces levels of Smad2 protein. Adenoviral overexpression of Smad2 also blocked SLPI-induced axonal regeneration. SLPI and Smad2 may therefore represent new targets for therapeutic intervention in CNS injury.


Assuntos
Bainha de Mielina/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Proteína Smad2/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , AMP Cíclico/metabolismo , Feminino , Expressão Gênica/fisiologia , Injeções Espinhais , Masculino , Proteínas da Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/fisiopatologia , RNA Interferente Pequeno/genética , Ratos , Ratos Endogâmicos F344 , Ratos Long-Evans , Células Ganglionares da Retina/fisiologia , Inibidor Secretado de Peptidases Leucocitárias/genética , Inibidor Secretado de Peptidases Leucocitárias/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Smad2/genética , Fator de Crescimento Transformador beta/metabolismo
14.
Clocks Sleep ; 6(2): 281-290, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38920421

RESUMO

Previous research has revealed that daily variations in human neurobehavioral functions are driven in part by the endogenous circadian system. The objective of this study was to explore whether there exists a circadian influence on performance regarding a risky decision-making task and to determine whether the performance changes with sleep deprivation (SD). Thirteen participants underwent a 39 h constant routine (CR) protocol, during which they remained awake in constant conditions and performed the BART (balloon analogue risk task) every two hours. The mean pumps (gains) (p < 0.001) and balloons popped (losses) (p = 0.003) exhibited variation during the CR. The reaction time (RT) also showed significant variation across the CR (p < 0.001), with slower mean RTs in the morning hours following SD. A greater risk propensity was observed around midday before SD and a lower risk propensity after 29.5 h of being awake. The sensitivity to punishment varied during the CR, but did not follow a predictable trend. Further research using real monetary incentives and neurophysiological measures is warranted to elucidate these findings.

15.
Sleep Health ; 10(1S): S25-S33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007304

RESUMO

OBJECTIVES: Mathematical models of human neurobehavioral performance that include the effects of acute and chronic sleep restriction can be key tools in assessment and comparison of work schedules, allowing quantitative predictions of performance when empirical assessment is impractical. METHODS: Using such a model, we tested the hypothesis that resident physicians working an extended duration work roster, including 24-28 hours of continuous duty and up to 88 hours per week averaged over 4weeks, would have worse predicted performance than resident physicians working a rapidly cycling work roster intervention designed to reduce the duration of extended shifts. The performance metric used was attentional failures (ie, Psychomotor Vigilance Task lapses). Model input was 169 actual work and sleep schedules. Outcomes were predicted hours per week during work hours spent at moderate (equivalent to 16-20 hours of continuous wakefulness) or high (equivalent to ≥20 hours of continuous wakefulness) performance impairment. RESULTS: The model predicted that resident physicians working an extended duration work roster would spend significantly more time at moderate impairment (p = .02, effect size=0.2) than those working a rapidly cycling work roster; this difference was most pronounced during the circadian night (p < .001). On both schedules, performance was predicted to decline from weeks 1 + 2 to weeks 3 + 4 (p < .001), but the rate of decline was significantly greater on extended duration work roster (p < .01). Predicted performance impairment was inversely related to prior sleep duration (p < .001). CONCLUSIONS: These findings demonstrate the utility of a mathematical model to evaluate the predicted performance profile of schedules for resident physicians and others who experience chronic sleep restriction and circadian misalignment.

16.
Sleep Health ; 10(1S): S34-S40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37748973

RESUMO

OBJECTIVE: To examine effects of menstrual phase and nighttime light exposure on subjective sleepiness and auditory Psychomotor Vigilance Task performance. METHODS: Twenty-nine premenopausal women (12 =Follicular; 17 =Luteal) completed a 6.5-hour nighttime monochromatic light exposure with varying wavelengths (420-620 nm) and irradiances (1.03-14.12 µW/cm2). Subjective sleepiness, reaction time, and attentional lapses were compared between menstrual phases in women with minimal (<33%) or substantial (≥33%) light-induced melatonin suppression. RESULTS: When melatonin was not suppressed, women in the follicular phase had significantly worse reaction time (mean difference=145.1 ms, 95% CI 51.8-238.3, p < .001, Cohen's D=1.9) and lapses (mean difference=12.9 lapses, 95% CI 4.37-21.41, p < .001, Cohen's D=1.7) compared to women in the luteal phase. When melatonin was suppressed, women in the follicular phase had significantly better reaction time (mean difference=152.1 ms, 95% CI 43.88-260.3, p < .001, Cohen's D=1.7) and lapses (mean difference=12.3 lapses, 95% CI 1.14-25.6, p < .01, Cohen's D=1.6) compared to when melatonin was not suppressed, such that their performance was not different (p > .9) from women in the luteal phase. Subjective sleepiness did not differ by menstrual phase (mean difference=0.6, p > .08) or melatonin suppression (mean difference=0.2, p > .4). CONCLUSIONS: Nighttime light exposure sufficient to suppress melatonin can also mitigate neurobehavioral performance deficits associated with the follicular phase. Despite the relatively small sample size, these data suggest that nighttime light may be a valuable strategy to help reduce errors and accidents in female shift workers.

17.
Sleep Adv ; 5(1): zpae032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903700

RESUMO

Study Objectives: We previously reported that during a 45-day simulated space mission, a dynamic lighting schedule (DLS) improved circadian phase alignment and performance assessed once on selected days. This study aimed to evaluate how DLS affected performance on a 5-minute psychomotor vigilance task (PVT) administered multiple times per day on selected days. Methods: Sixteen crewmembers (37.4 ±â€…6.7 years; 5F) underwent six cycles of 2 × 8-hour/night followed by 5 × 5-hour/night sleep opportunities. During the DLS (n = 8), daytime white light exposure was blue-enriched (~6000 K; Level 1: 1079, Level 2: 76 melanopic equivalent daytime illuminance (melEDI) lux) and blue-depleted (~3000-4000 K; L1: 21, L2: 2 melEDI lux) 3 hours before bed. In the standard lighting schedule (SLS; n = 8), lighting remained constant (~4500K; L1: 284, L2 62 melEDI lux). Effects of lighting condition (DLS/SLS), sleep condition (5/8 hours), time into mission, and their interactions, and time awake on PVT performance were analyzed using generalized linear mixed models. Results: The DLS was associated with fewer attentional lapses (reaction time [RT] > 500 milliseconds) compared to SLS. Lapses, mean RT, and 10% fastest/slowest RTs were worse following 5 compared to 8 hours of sleep but not between lighting conditions. There was an effect of time into mission on RTs, likely due to sleep loss. Overall performance differed by time of day, with longer RTs at the beginning and end of the day. There were more lapses and slower RTs in the afternoon in the SLS compared to the DLS condition. Conclusions: Future missions should incorporate DLS to enhance circadian alignment and performance. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.

18.
J Neurosci ; 32(41): 14242-53, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055493

RESUMO

In mammals, the pupillary light reflex is mediated by intrinsically photosensitive melanopsin-containing retinal ganglion cells that also receive input from rod-cone photoreceptors. To assess the relative contribution of melanopsin and rod-cone photoreceptors to the pupillary light reflex in humans, we compared pupillary light responses in normally sighted individuals (n = 24) with a blind individual lacking rod-cone function. Here, we show that visual photoreceptors are required for normal pupillary responses to continuous light exposure at low irradiance levels, and for sustained pupillary constriction during exposure to light in the long-wavelength portion of the visual spectrum. In the absence of rod-cone function, pupillomotor responses are slow and sustained, and cannot track intermittent light stimuli, suggesting that rods/cones are required for encoding fast modulations in light intensity. In sighted individuals, pupillary constriction decreased monotonically for at least 30 min during exposure to continuous low-irradiance light, indicating that steady-state pupillary responses are an order of magnitude slower than previously reported. Exposure to low-irradiance intermittent green light (543 nm; 0.1-4 Hz) for 30 min, which was given to activate cone photoreceptors repeatedly, elicited sustained pupillary constriction responses that were more than twice as great compared with exposure to continuous green light. Our findings demonstrate nonredundant roles for rod-cone photoreceptors and melanopsin in mediating pupillary responses to continuous light. Moreover, our results suggest that it might be possible to enhance nonvisual light responses to low-irradiance exposures by using intermittent light to activate cone photoreceptors repeatedly in humans.


Assuntos
Adaptação Ocular/fisiologia , Estimulação Luminosa/métodos , Reflexo Pupilar/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Opsinas de Bastonetes/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pupila/fisiologia , Adulto Jovem
19.
J Physiol ; 591(1): 353-63, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23090946

RESUMO

The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a phase response curve (PRC). Previous PRCs in humans have utilized high-intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18-30 years) were studied for 9-10 days in a time-free environment. The protocol included three baseline days followed by a constant routine (CR) to assess initial circadian phase. Following this CR, participants were exposed to a 6.5 h 480 nm light exposure (11.8 µW cm(-2), 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in dim light melatonin onset (DLMO) between CRs. Exposure to 6.5 h of 480 nm light resets the circadian pacemaker according to a conventional type 1 PRC with fitted maximum delays and advances of -2.6 h and 1.3 h, respectively. The 480 nm PRC induced ∼75% of the response of the 10,000 lux white light PRC. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure.


Assuntos
Ritmo Circadiano/fisiologia , Luz , Adolescente , Adulto , Temperatura Corporal , Feminino , Humanos , Masculino , Melatonina/fisiologia , Adulto Jovem
20.
Sleep ; 46(8)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37026184

RESUMO

STUDY OBJECTIVES: We examined the impact of adding a single-high-melanopic-illuminance task lamp in an otherwise low-melanopic-illuminance environment on alertness, neurobehavioral performance, learning, and mood during an 8-h simulated workday. METHODS: Sixteen healthy young adults [mean(±SD) age = 24.2 ± 2.9, 8F] participated in a 3-day inpatient study with two 8-h simulated workdays and were randomized to either ambient fluorescent room light (~30 melanopic EDI lux, 50 lux), or room light supplemented with a light emitting diode task lamp (~250 melanopic EDI lux, 210 lux) in a cross-over design. Alertness, mood, and cognitive performance were assessed throughout the light exposure and compared between conditions using linear mixed models. RESULTS: The primary outcome measure of percentage correct responses on the addition task was significantly improved relative to baseline in the supplemented condition (3.15% ± 1.18%), compared to the ambient conditions (0.93% ± 1.1%; FDR-adj q = 0.005). Additionally, reaction time and attentional failures on the psychomotor vigilance tasks were significantly improved with exposure to supplemented compared to ambient lighting (all, FDR-adj q ≤ 0.030). Furthermore, subjective measures of sleepiness, alertness, happiness, health, mood, and motivation were also significantly better in the supplemented, compared to ambient conditions (all, FDR-adj q ≤ 0.036). There was no difference in mood disturbance, affect, declarative memory, or motor learning between the conditions (all, FDR-adj q ≥ 0.308). CONCLUSIONS: Our results show that supplementing ambient lighting with a high-melanopic-illuminance task lamp can improve daytime alertness and cognition. Therefore, high-melanopic-illuminance task lighting may be effective when incorporated into existing suboptimal lighting environments. CLINICAL TRIALS: NCT04745312. Effect of Lighting Supplementation on Daytime Cognition. https://clinicaltrials.gov/ct2/show/NCT04745312.


Assuntos
Iluminação , Vigília , Adulto Jovem , Humanos , Cognição , Suplementos Nutricionais , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA