Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Opt Lett ; 49(3): 638-641, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300078

RESUMO

This study demonstrates the concept of an angle-variable compact spectral module. As a key feature, the filter-based module enables highly efficient wavelength-selective light detection by applying the reflective beam path according to the origami example. It was accomplished through inclined mirrors, which allow for different incident angles on the wavelength separating interference filters used in a robust assembly with no moving parts. To experimentally verify the concept, a wavelength range between 550 and 700 nm was detected by 11 spectral channels. These initial results showed the potential to develop easily scalable and application-tailored sensors, which can overcome conventional filter-based sensor approaches that use upright or fixed-angle illumination.

2.
J Opt Soc Am A Opt Image Sci Vis ; 41(5): 838-843, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856570

RESUMO

This study explores the design and optimization of cascaded double-hyperchromatic optical systems (i.e., 2×2 lenses), focusing on achieving an extremely linear axial spectral decomposition characterized by an exceptionally low equivalent Abbe number. The investigation involves two double hyperchromats, considering both purely refractive systems and hybrid configurations that combine refractive and diffractive elements. For purely refractive systems, alternating focal length signs of divergent and collective lenses are crucial to achieve significant axial chromatic dispersion. In hybrid systems, the position of the diffractive optical element (DOE) and the selection of focal lengths play key roles in obtaining extremely low equivalent Abbe numbers. The optimized systems demonstrate absolute equivalent Abbe numbers of 0.983 for purely refractive and 0.65 for hybrid systems-more than four times lower than the absolute Abbe number of a single diffractive element. Notably, even systems using standard materials exhibit significantly low equivalent Abbe numbers of 2.5 and 1.4 for pure refractive and hybrid configurations, respectively. These results offer promising opportunities for improving optical applications based on axial spectral decomposition, overcoming previous limitations of axial chromatic spreading.

3.
Appl Opt ; 62(19): 5170-5178, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707220

RESUMO

This paper presents the concept, optical design, and implementation of a catadioptric sensor for simultaneous imaging of a scene and pinpoint spectroscopy of a selected position, with object distances ranging from tens of centimeters to infinity and from narrow to wide adjustable viewing angles. The use of reflective imaging elements allows the implementation of folded and interlaced beam paths for spectroscopy and image acquisition, which enables a compact setup with a footprint of approximately 90m m×80m m. Although the wavelength range addressed extends far beyond the visible spectrum and reaches into the near infrared (∼400n m to 1000 nm), only three spherical surfaces are needed to project the intermediate image onto the image detector. The anamorphic imaging introduced by the folded beam path with different magnification factors in the horizontal and vertical directions as well as distortion can be compensated by software-based image processing. The area of the scene to be spectrally analyzed is imaged onto the input of an integrated miniature spectrometer. The imaging properties and spectroscopic characteristics are demonstrated in scenarios close to potential applications such as product sorting and fruit quality control.

4.
Opt Express ; 30(17): 31336-31353, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242218

RESUMO

This contribution presents the design and implementation of a compact and robust Echelle-inspired cross-grating spectrometer which is arranged as a double pass setup. This allows use of the employed refractive elements for collimation of the incoming light and, after diffraction at the reflective crossed diffraction grating, for imaging the diffracted light onto the detector. The crossed diffraction grating combines the two dispersive functionalities of a classical Echelle spectrometer in a single element and is therefore formed by a superposition of two blazed linear gratings which are oriented perpendicularly. The refractive elements and the plane grating are arranged in a rigid objective group which is beneficial in terms of stability and robustness. The experimental tests prove that the designed resolving power of more than 300 is achieved for the addressed spectrum ranging from 400 nm to 1100 nm by using an entrance pinhole diameter of 105 µm. The utilization of a single mode fiber increases the resolving power to more than 1000, but leads to longer acquisition times.

5.
J Opt Soc Am A Opt Image Sci Vis ; 39(11): 1992-2000, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520695

RESUMO

Hyperchromatic systems are characterized by strong longitudinal chromatic aberrations that are quantitatively described by very small equivalent Abbe numbers. In this contribution, doublet systems are systematically studied with the aim of obtaining extreme values for the equivalent Abbe numbers. Both purely refractive combinations and hybrid systems of diffractive and refractive components are considered. Chromatic axial splitting is determined as a function of the optical powers of the individual components as well as the dispersion properties of the materials involved. In order to determine actual implementable configurations for extremely small equivalent Abbe numbers, a systematic ray-trace analysis is performed in addition to paraxial studies, taking into account geometric constraints on lens curvatures and considering also complete, continuous dispersion curves. As extreme values for systems with appropriate imaging quality, an equivalent Abbe number of υ~=-2.5 is obtained for the purely refractive approach, and υ~=0.4 for the hybrid case, which is more than 8 times smaller than the absolute value of a single diffractive lens.

6.
Appl Opt ; 61(33): 9996-10001, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606832

RESUMO

This paper demonstrates a method to significantly enhance the detection efficiency of filter-based spectral sensors without the use of additional dichroic optics for spectral preselection. The fundamental principle is that light reflected from one interference filter or filter segment can be used consecutively, reducing the overall system losses. The proof-of-concept is presented using two compact optical modules. The first module uses 10 individual filters between 520 and 800 nm, and the second is capable of continuous spectrum acquisition between 450 and 825 nm using a linear variable filter (LVF) as a key element. An efficiency increase factor of up to approximately 100 compared to a common system, where the entire LVF is directly illuminated, was demonstrated.

7.
Appl Opt ; 61(8): 2049-2059, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35297897

RESUMO

This paper presents concept, optical design, and the implementation of a novel, to the best of our knowledge, lithographic exposure tool for the fabrication of rotationally symmetric meso- and microscale optical structures using a variable ring-shaped light distribution. Compared to the conventional lithographic technique of direct writing in Cartesian coordinates, which is intrinsically suboptimal for the fabrication of rotationally symmetric optical structures, this approach allows for fast exposure and avoids disturbing stitching effects. The diameter of the exposure ring varies between 1.6 and 6.5 mm, and the ring width measures ∼75µm full width at half-maximum for all diameters. The basic capabilities of the exposure tool are demonstrated by the fabrication of exemplary meso- and microscale structures such as diffractive axicon elements, phase rings, Fresnel zone plates and zone plate arrays.

8.
Appl Opt ; 59(8): 2443-2451, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225780

RESUMO

A method that significantly increases the detection efficiency of filter array-based spectral sensors is proposed. The basic concept involves a wavelength-dependent redistribution of incident light before it reaches the filter elements located in front of the detector. Due to this redistribution, each filter element of the array receives a spatially concentrated amount of a pre-selected and adjusted spectral partition of the entire incident light. This approach can be employed to significantly reduce the reflection and absorption losses of each filter element. The proof-of-concept is demonstrated by a setup that combines a series of consecutively arranged dichroic filters with Fabry-Perot filter arrays. Experimentally, an efficiency increase by a factor larger than 4 compared to a reference system is demonstrated. The optical system is a non-imaging spectrometer, which combines the efficiency enhancement module with the filter arrays, is compact (17.5mm×17.5mm×7.8mm), and integrated completely inside the CCD camera mount.

9.
Appl Opt ; 59(5): 1338-1346, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225391

RESUMO

Echelle inspired cross-grating spectrometers offer the potential to bridge the gap between classical high-end echelle spectrometers and curved-grating single-element instruments. In particular, the cross-grating approach offers the possibility to simultaneously achieve a high spectral resolution and a wide accessible spectral range in compact dimensions and without moving parts. We report on the complete realization and implementation details of an all-reflective cross-grating spectrometer based on a modified Czerny-Turner configuration including a folded beam path and a toric-convex mirror for aberration compensation. The applicability of the cross-grating spectrometer is demonstrated by test measurements including the recording of the spectra of different plant leaves. For the cross-grating spectrometer, with an accessible wavelength range between 330 and 1100 nm, a spectral resolution of 0.6 nm at 589 nm was achieved.

10.
Molecules ; 25(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456151

RESUMO

In nanoimprint lithography (NIL), a pattern is created by mechanical deformation of an imprint resist via embossing with a stamp, where the adhesion behavior during the filling of the imprint stamp and its subsequent detachment may impose some practical challenges. Here we explored thermal and reverse NIL patterning of polyvinylferrocene and vinylferrocene-methyl methacrylate copolymers to prepare complex non-spherical objects and patterns. While neat polyvinylferrocene was found to be unsuitable for NIL, freshly-prepared vinylferrocene-methyl methacrylate copolymers, for which identity and purity were established, have been structured into 3D-micro/nano-patterns using NIL. The cross-, square-, and circle-shaped columnar structures form a 3 × 3 mm arrangement with periodicity of 3 µm, 1 µm, 542 nm, and 506 nm. According to our findings, vinylferrocene-methyl methacrylate copolymers can be imprinted without further additives in NIL processes, which opens the way for redox-responsive 3D-nano/micro-objects and patterns via NIL to be explored in the future.


Assuntos
Compostos Ferrosos/química , Metilmetacrilato/química , Nanocompostos/química , Polímeros/química , Compostos de Vinila/química , Compostos Ferrosos/síntese química , Metilmetacrilato/síntese química , Impressão Molecular , Polímeros/síntese química , Polivinil/síntese química , Polivinil/química , Propriedades de Superfície , Compostos de Vinila/síntese química
11.
Opt Lett ; 44(14): 3550-3553, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305570

RESUMO

Tailored 3D microparticles and nanostructures lead to increasing possibilities in semiconductor industry or biomedical applications. In an interdisciplinary study we investigate the parallel production of such particles by using nanoimprint lithography in combination with their characterization based on interference microscopy. In this Letter we report on a metrological inspection, which tends to a universal measurement solution comparing the sample optically to a master object produced in the same way as the sample.

12.
J Opt Soc Am A Opt Image Sci Vis ; 36(3): 345-352, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874187

RESUMO

The concept of a new compact echelle-inspired cross-grating spectrometer is introduced, and a specific optical design is presented. The new concept aims to achieve simultaneously a high spectral resolution, a wide accessible spectral range, and compact dimensions. The essential system novelty concerns the combination of different aspects: the implementation of a crossed grating comprising both the main dispersion and order separation, a folded reflective beam path, which enables a reduction of the system volume, and the introduction of a form-adjustable mirror for aberration compensation. The exemplary optical design offers a spectral bandwidth ranging from 330-1100 nm with spectral resolution better than 1.4 nm in the fourth and 0.4 nm in the 11th order. The optical setup covers a volume of 110 mm×110 mm×30 mm.

13.
Materials (Basel) ; 17(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39063687

RESUMO

Casimir force densities, i.e., force per area, become very large if two solid material surfaces come closer together to each other than 10 nm. In most cases, the forces are attractive. In some cases, they can be repulsive depending on the solid materials and the fluid medium in between. This review provides an overview of experimental and theoretical studies that have been performed and focuses on four main aspects: (i) the combinations of different materials, (ii) the considered geometries, (iii) the applied experimental measurement methodologies and (iv) a novel self-assembly methodology based on Casimir forces. Briefly reviewed is also the influence of additional parameters such as temperature, conductivity, and surface roughness. The Casimir effect opens many application possibilities in microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), where an overview is also provided. The knowledge generation in this fascinating field requires interdisciplinary approaches to generate synergetic effects between technological fabrication metrology, theoretical simulations, the establishment of adequate models, artificial intelligence, and machine learning. Finally, multiple applications are addressed as a research roadmap.

14.
Opt Express ; 21(2): 2347-54, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389214

RESUMO

We propose a freely programmable THz diffraction grating based on an electrostatically actuated, computer controlled array of metallic cantilevers. Switching between different grating patterns enables tailoring spatio-temporal profiles of the THz waves. By characterizing the device with spatially resolved THz time domain spectroscopy, we demonstrate beam steering for a wide frequency band extending from 0.15 THz to 0.9 THz. The steerable range at 0.3 THz exceeds 40°. Focusing is also demonstrated by programming a chirped grating. The proposed approach could be employed to mimic arbitrary diffraction optics, enabling highly integrated and extremely flexible systems indispensable for THz stand-off imaging and communications.


Assuntos
Lentes , Iluminação/instrumentação , Refratometria/instrumentação , Radiação Terahertz , Desenho de Equipamento , Análise de Falha de Equipamento
15.
Polymers (Basel) ; 15(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177132

RESUMO

Electrochromic (EC) windows on glass for thermal and glare protection in buildings, often referred to as smart (dimmable) windows, are commercially available, along with rearview mirrors or windows in aircraft cabins. Plastic-based applications, such as ski goggles, visors and car windows, that require lightweight, three-dimensional (3D) geometry and high-throughput manufacturing are still under development. To produce such EC devices (ECDs), a flexible EC film could be integrated into a back injection molding process, where the films are processed into compact 3D geometries in a single automized step at a low processing time. Polycarbonate (PC) as a substrate is a lightweight and robust alternative to glass due to its outstanding optical and mechanical properties. In this study, an EC film on a PC substrate was fabricated and characterized for the first time. To achieve a highly transmissive and colorless bright state, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was used as the working electrode, while titanium dioxide (TiO2) was used as the counter electrode material. They were deposited onto ITO-coated PC films using dip- and slot-die coating, respectively. The electrodes were optically and electrochemically characterized. An ECD with a polyurethane containing gel electrolyte was investigated with regard to optical properties, switching speed and cycling behavior. The ECD exhibits a color-neutral and highly transmissive bright state with a visible light transmittance of 74% and a bluish-colored state of 64%, a fast switching speed (7 s/4 s for bleaching/coloring) and a moderately stable cycling behavior over 500 cycles with a decrease in transmittance change from 10%to 7%.

16.
Int J Artif Organs ; 45(11): 889-897, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36036062

RESUMO

Dialysis-induced changes in plasma sodium concentration may cause undesirable side effects. To prevent these, the sodium content in dialysis fluid has to be individualized based on the patient's plasma sodium concentration. In this paper, we describe a simple conductivity based method for measuring the plasma sodium concentration. The method is based on performing a bypass during which the residual volume on the dialysate side of the dialyzer at least partially adopts the sodium concentration on the blood side. The conductivity at dialysate outlet of the dialyzer after the end of bypass corresponds to the sodium concentration. We show that already 14 s of bypass are sufficient to subsequently measure a conductivity that correlates with the blood-side sodium concentration. Thus, the short bypass method allows a time saving of 88% compared to the long bypass of 120 s. In vitro experiments with bovine blood show that plasma sodium concentration can be non-invasively and time-efficiently measured during dialysis. Bland Altman analysis reveals a bias of 0.28 mmol/l and limits of agreement of -3.17 and 3.74 mmol/l for the long bypass. For the short bypass, bias is 0.09 mmol/l and limits are -3.90 and 4.08 mmol/l. Since the method presented is based on established conductivity cells, no additional sensors are required, so that the method could be easily implemented in dialysis machines. In future, performing a bypass at the beginning of a treatment may be used to adjust the composition of dialysis fluid individually for each patient.


Assuntos
Rins Artificiais , Diálise Renal , Animais , Bovinos , Soluções para Diálise , Humanos , Diálise Renal/métodos , Sódio
17.
Polymers (Basel) ; 14(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35160576

RESUMO

A blend of low molecular azo glass (AZOPD) and polystyrene (PS) were used for the systematic investigation of photo-induced stretching and recovery of nanoimprinted structures. For this purpose, light and heat was used as recovery stimuli. The AZOPD/PS microstructures, fabricated with thermal nanoimprint lithography (tNIL), comprises three different shapes (circles, crosses and squares) and various concentrations of AZOPD fractions. The results show a concentration-dependent reshaping. Particularly the sample with 43 w-% of the AZOPD fraction have shown the best controllable recovery for the used parameters. A possible explanation for shape recovery might be the stabilizing effect of the PS-matrix.

18.
Nanomaterials (Basel) ; 11(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440826

RESUMO

Optical spectrometers and sensors have gained enormous importance in metrology and information technology, frequently involving the question of size, resolution, sensitivity, spectral range, efficiency, reliability, and cost. Nanomaterials and nanotechnological fabrication technologies have huge potential to enable an optimization between these demands, which in some cases are counteracting each other. This paper focuses on the visible and near infrared spectral range and on five types of optical sensors (optical spectrometers): classical grating-based miniaturized spectrometers, arrayed waveguide grating devices, static Fabry-Pérot (FP) filter arrays on sensor arrays, tunable microelectromechanical systems (MEMS) FP filter arrays, and MEMS tunable photonic crystal filters. The comparison between this selection of concepts concentrates on (i) linewidth and resolution, (ii) required space for a selected spectral range, (iii) efficiency in using available light, and (iv) potential of nanoimprint for cost reduction and yield increase. The main part of this review deals with our own results in the field of static FP filter arrays and MEMS tunable FP filter arrays. In addition, technology for efficiency boosting to get more of the available light is demonstrated.

19.
Int J Artif Organs ; 43(9): 579-586, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32013679

RESUMO

Patients who suffer from end-stage renal disease require renal replacement therapy, including haemodialysis. While applying extracorporeal blood treatment, uraemic toxins accumulated in the patients' blood pass into a physiological solution, the dialysis fluid. Thus, important information about the patient's health status can be obtained by analysing the spent dialysis fluid. To make use of this information, corresponding analysis concepts must be developed. In this context, this article reports the analysis of fluorescence in spent dialysis fluid. Excitation and emission maxima of fluorescence in spent dialysis fluid were recorded, and the main fluorescent substances were identified and quantified using high-performance liquid chromatography analysis. Fluorescence in spent dialysis fluid has two prominent excitation maxima at λex1 = 228 nm and λex2 = 278 nm. However, both excitation maxima cause emission with maxima at λem = 350 nm. Identification of fluorescent substances using high-performance liquid chromatography showed that the main contributors to the overall fluorescence in spent dialysis fluid are tyrosine, tryptophan, indoxyl sulphate and indole-3-acetic acid. However, these substances are responsible for only one-third of the overall fluorescence of spent dialysis fluid. A large number of substances, each of which contributes only to a small part to the overall fluorescence, emit the remaining fluorescence.


Assuntos
Soluções para Diálise/química , Falência Renal Crônica/metabolismo , Falência Renal Crônica/terapia , Diálise Renal , Espectrometria de Fluorescência , Cromatografia Líquida de Alta Pressão , Humanos , Indicã/análise , Ácidos Indolacéticos/análise , Triptofano/análise , Tirosina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA