Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nature ; 558(7709): 324-328, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875414

RESUMO

Adaptation of organisms to environmental niches is a hallmark of evolution. One prevalent example is that of thermal adaptation, in which two descendants evolve at different temperature extremes1,2. Underlying the physiological differences between such organisms are changes in enzymes that catalyse essential reactions 3 , with orthologues from each organism undergoing adaptive mutations that preserve similar catalytic rates at their respective physiological temperatures4,5. The sequence changes responsible for these adaptive differences, however, are often at surface-exposed sites distant from the substrate-binding site, leaving the active site of the enzyme structurally unperturbed6,7. How such changes are allosterically propagated to the active site, to modulate activity, is not known. Here we show that entropy-tuning changes can be engineered into distal sites of Escherichia coli adenylate kinase, allowing us to quantitatively assess the role of dynamics in determining affinity, turnover and the role in driving adaptation. The results not only reveal a dynamics-based allosteric tuning mechanism, but also uncover a spatial separation of the control of key enzymatic parameters. Fluctuations in one mobile domain (the LID) control substrate affinity, whereas dynamic attenuation in the other domain (the AMP-binding domain) affects rate-limiting conformational changes that govern enzyme turnover. Dynamics-based regulation may thus represent an elegant, widespread and previously unrealized evolutionary adaptation mechanism that fine-tunes biological function without altering the ground state structure. Furthermore, because rigid-body conformational changes in both domains were thought to be rate limiting for turnover8,9, these adaptation studies reveal a new model for understanding the relationship between dynamics and turnover in adenylate kinase.


Assuntos
Adaptação Biológica , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Regulação Alostérica , Temperatura Baixa , Escherichia coli/enzimologia , Adaptação Biológica/genética , Adenilato Quinase/genética , Regulação Alostérica/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Entropia , Escherichia coli/genética , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Especificidade por Substrato
2.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35038744

RESUMO

Protein stability is a fundamental molecular property enabling organisms to adapt to their biological niches. How this is facilitated and whether there are kingdom specific or more general universal strategies are unknown. A principal obstacle to addressing this issue is that the vast majority of proteins lack annotation, specifically thermodynamic annotation, beyond the amino acid and chromosome information derived from genome sequencing. To address this gap and facilitate future investigation into large-scale patterns of protein stability and dynamics within and between organisms, we applied a unique ensemble-based thermodynamic characterization of protein folds to a substantial portion of extant sequenced genomes. Using this approach, we compiled a database resource focused on the position-specific variation in protein stability. Interrogation of the database reveals: 1) domains of life exhibit distinguishing thermodynamic features, with eukaryotes particularly different from both archaea and bacteria; 2) the optimal growth temperature of an organism is proportional to the average apolar enthalpy of its proteome; 3) intrinsic disorder content is also proportional to the apolar enthalpy (but unexpectedly not the predicted stability at 25 °C); and 4) secondary structure and global stability information of individual proteins is extractable. We hypothesize that wider access to residue-specific thermodynamic information of proteomes will result in deeper understanding of mechanisms driving functional adaptation and protein evolution. Our database is free for download at https://afc-science.github.io/thermo-env-atlas/ (last accessed January 18, 2022).


Assuntos
Archaea , Proteoma , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Eucariotos/genética , Proteoma/genética , Termodinâmica
3.
Proc Natl Acad Sci U S A ; 117(38): 23606-23616, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900925

RESUMO

Phosphorylation sites are hyperabundant in the eukaryotic disordered proteome, suggesting that conformational fluctuations play a major role in determining to what extent a kinase interacts with a particular substrate. In biophysical terms, substrate selectivity may be determined not just by the structural-chemical complementarity between the kinase and its protein substrates but also by the free energy difference between the conformational ensembles that are, or are not, recognized by the kinase. To test this hypothesis, we developed a statistical-thermodynamics-based informatics framework, which allows us to probe for the contribution of equilibrium fluctuations to phosphorylation, as evaluated by the ability to predict Ser/Thr/Tyr phosphorylation sites in the disordered proteome. Essential to this framework is a decomposition of substrate sequence information into two types: vertical information encoding conserved kinase specificity motifs and horizontal information encoding substrate conformational equilibrium that is embedded, but often not apparent, within position-specific conservation patterns. We find not only that conformational fluctuations play a major role but also that they are the dominant contribution to substrate selectivity. In fact, the main substrate classifier distinguishing selectivity is the magnitude of change in local compaction of the disordered chain upon phosphorylation of these mostly singly phosphorylated sites. In addition to providing fundamental insights into the consequences of phosphorylation across the proteome, our approach provides a statistical-thermodynamic strategy for partitioning any sequence-based search into contributions from structural-chemical complementarity and those from changes in conformational equilibrium.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Fosfoproteínas/química , Proteoma/química , Especificidade por Substrato/genética , Bases de Dados de Proteínas , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Proteoma/genética , Proteoma/metabolismo
4.
J Biol Chem ; 296: 100240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33384381

RESUMO

Castration resistant prostate cancer (CRPC) continues to be androgen receptor (AR) driven. Inhibition of AR signaling in CRPC could be advanced using state-of-the-art biophysical and biochemical techniques. Structural characterization of AR and its complexes by cryo-electron microscopy would advance the development of N-terminal domain (NTD) and ligand-binding domain (LBD) antagonists. The structural basis of AR function is unlikely to be determined by any single structure due to the intrinsic disorder of its NTD, which not only interacts with coregulators but likely accounts for the constitutive activity of AR-splice variants (SV), which lack the LBD and emerge in CRPC. Using different AR constructs lacking the LBD, their effects on protein folding, DNA binding, and transcriptional activity could reveal how interdomain coupling explains the activity of AR-SVs. The AR also interacts with coregulators that promote chromatin looping. Elucidating the mechanisms involved can identify vulnerabilities to treat CRPC, which do not involve targeting the AR. Phosphorylation of the AR coactivator MED-1 by CDK7 is one mechanism that can be blocked by the use of CDK7 inhibitors. CRPC gains resistance to AR signaling inhibitors (ARSI). Drug resistance may involve AR-SVs, but their role requires their reliable quantification by SILAC-mass spectrometry during disease progression. ARSI drug resistance also occurs by intratumoral androgen biosynthesis catalyzed by AKR1C3 (type 5 17ß-hydroxysteroid dehydrogenase), which is unique in that its acts as a coactivator of AR. Novel bifunctional inhibitors that competitively inhibit AKR1C3 and block its coactivator function could be developed using reverse-micelle NMR and fragment-based drug discovery.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Fenômenos Bioquímicos , Fenômenos Biofísicos , Humanos , Masculino
5.
Biophys J ; 120(12): 2498-2510, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901472

RESUMO

Defining the role of intrinsic disorder in proteins in the myriad of biological processes with which it is involved represents a significant goal in modern biophysics. Toward this end, NMR is uniquely suited for molecular studies of dynamic and disordered regions, but studying these regions in concert with their more structured domains and binding partners presents spectroscopic challenges. Here, we investigate the interactions between the structured and disordered regions of the human glucocorticoid receptor (GR). To do this, we developed an NMR strategy that relies on a novel relaxation filter for the simultaneous study of structured and unstructured regions. Using this approach, we conducted a comparative analysis of three translational isoforms of GR containing a folded DNA-binding domain (DBD) and two disordered regions that flank the DBD, one of which varies in size in the different isoforms. Notably, we were able to assign resonances that had previously been inaccessible because of the spectral complexity of the translational isoforms, which in turn allowed us to 1) identify a region of the structured DBD that undergoes significant changes in the local chemical environment in the presence of the disordered region and 2) determine differences in the conformational ensembles of the disordered regions of the translational isoforms. Furthermore, an ensemble-based thermodynamic analysis of the isoforms reveals conserved patterns of stability within the N-terminal domain of GR that persist despite low sequence conservation. These studies provide an avenue for further investigations of the mechanistic underpinnings of the functional relevance of the translational isoforms of GR while also providing a general NMR strategy for studying systems containing both structured and disordered regions.


Assuntos
Proteínas Intrinsicamente Desordenadas , Receptores de Glucocorticoides , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas , Termodinâmica
6.
Biochemistry ; 60(21): 1647-1657, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009973

RESUMO

Tumor susceptibility gene 101 (TSG101) is involved in endosomal maturation and has been implicated in the transcriptional regulation of several steroid hormone receptors, although a detailed characterization of such regulation has yet to be conducted. Here we directly measure binding of TSG101 to one steroid hormone receptor, the glucocorticoid receptor (GR). Using biophysical and cellular assays, we show that the coiled-coil domain of TSG101 (1) binds and folds the disordered N-terminal domain of the GR, (2) upon binding improves the DNA binding of the GR in vitro, and (3) enhances the transcriptional activity of the GR in vivo. Our findings suggest that TSG101 is a bona fide transcriptional co-regulator of the GR and reveal how the underlying thermodynamics affect the function of the GR.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Células HeLa , Humanos , Ligação Proteica , Domínios Proteicos/fisiologia , Elementos Reguladores de Transcrição/fisiologia , Fatores de Transcrição/genética , Transcrição Gênica/genética , Ativação Transcricional/genética
7.
Nature ; 508(7496): 331-9, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24740064

RESUMO

Allostery is the process by which biological macromolecules (mostly proteins) transmit the effect of binding at one site to another, often distal, functional site, allowing for regulation of activity. Recent experimental observations demonstrating that allostery can be facilitated by dynamic and intrinsically disordered proteins have resulted in a new paradigm for understanding allosteric mechanisms, which focuses on the conformational ensemble and the statistical nature of the interactions responsible for the transmission of information. Analysis of allosteric ensembles reveals a rich spectrum of regulatory strategies, as well as a framework to unify the description of allosteric mechanisms from different systems.


Assuntos
Regulação Alostérica , Proteínas/química , Proteínas/metabolismo , Sítio Alostérico , Hemoglobinas/química , Hemoglobinas/metabolismo , Ligantes , Modelos Moleculares , Desdobramento de Proteína , Termodinâmica
8.
Biochemistry ; 56(35): 4646-4655, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28776372

RESUMO

The tumor susceptibility gene-101 coiled coil domain (TSG101cc) is an integral component of the endosomal maturation machinery and cytokinesis, and also interacts with several transcription factors. The TSG101cc has been crystallized as a homotetramer but is known to interact with two of its binding partners as a heterotrimer. To investigate this apparent discrepancy, we examined the solution thermodynamics of the TSG101cc. Here, we use circular dichroism, differential scanning calorimetry, analytical ultracentrifugation, fluorescence, and structural thermodynamic analysis to investigate the structural stability and the unfolding of the TSG101cc. We demonstrate that TSG101cc exists in solution primarily as a tetramer, which unfolds in a two-state manner. Surprisingly, no homodimeric or homotrimeric species were detected. Structural thermodynamic analysis of the homotetrameric structure and comparison with known oligomeric coiled-coils suggests that the TSG101cc homotetramer is comparatively unstable on a per residue basis. Furthermore, the homotrimeric coiled-coil is predicted to be much less stable than the functional heterotrimeric coiled-coil in the endosomal sorting complex required for transport 1 (ESCRT1). These results support a model whereby the tetramer-monomer equilibrium of TSG101 serves as the cellular reservoir of TSG101, which is effectively outcompeted when its binding partners are present and the heteroternary complex can form.


Assuntos
Proteínas de Ligação a DNA/química , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Fatores de Transcrição/química , Escherichia coli , Temperatura Alta , Concentração de Íons de Hidrogênio , Conformação Proteica , Domínios Proteicos , Desdobramento de Proteína
9.
Nucleic Acids Res ; 43(7): 3680-7, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25805170

RESUMO

The high-throughput sequencing of nuclease-protected mRNA fragments bound to ribosomes, a technique known as ribosome profiling, quantifies the relative frequencies with which different regions of transcripts are translated. This technique has revealed novel translation initiation sites with unprecedented scope and has furthered investigations into the connections between codon biases and translation rates. Yet the location of the codon being decoded in ribosome footprints is still unknown, and has been complicated by the recent observation of footprints with non-canonical lengths. Here we show how taking into account the variations in ribosome footprint lengths can reveal the ribosome aminoacyl (A) and peptidyl (P) site locations. These location assignments are in agreement with the proposed mechanisms for various ribosome pauses and further enhance the resolution of the profiling data. We also show that GC-rich motifs at the 5' ends of footprints are found in yeast, calling into question the anti-Shine-Dalgarno effect's role in ribosome pausing.


Assuntos
Ribossomos/metabolismo , Sítios de Ligação , Códon , Escherichia coli/metabolismo , Leveduras/metabolismo
10.
Biophys J ; 110(6): 1280-90, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028638

RESUMO

Single-molecule force spectroscopy has emerged as a powerful tool for studying the folding of biological macromolecules. Mechanical manipulation has revealed a wealth of mechanistic information on transient and intermediate states. To date, the majority of state assignment of intermediates has relied on empirical demarcation. However, performing such experiments in the presence of different osmolytes provides an alternative approach that reports on the structural properties of intermediates. Here, we analyze the folding and unfolding of T4 lysozyme with optical tweezers under a chemo-mechanical perturbation by adding osmolytes. We find that two unrelated protective osmolytes, sorbitol and trimethylamine-n-oxide, function by marginally decelerating unfolding rates and specifically modulating early events in the folding process, stabilizing formation of an on-pathway intermediate. The chemo-mechanical perturbation provides access to two independent metrics of the relevant states during folding trajectories, the contour length, and the solvent-accessible surface area. We demonstrate that the dependence of the population of the intermediate in different osmolytes, in conjunction with its measured contour length, provides the ability to discriminate between potential structural models of intermediate states. Our study represents a general strategy that may be employed in the structural modeling of equilibrium intermediate states observed in single-molecule experiments.


Assuntos
Dobramento de Proteína , Análise Espectral/métodos , Bacteriófago T4/enzimologia , Cinética , Modelos Moleculares , Muramidase/química , Termodinâmica
11.
Biophys J ; 110(2): 362-371, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789759

RESUMO

Intrinsically disordered regions of proteins, which lack unique tertiary structure under physiological conditions, are enriched in phosphorylation sites and in significant local bias toward the polyproline II conformation. The overrepresented coincidence of this posttranslational regulatory signal and local conformational bias within unstructured regions raises a question: can phosphorylation serve to manipulate the conformational preferences of a disordered protein? In this study, we use time-resolved fluorescence resonance energy transfer and a, to our knowledge, novel data analysis method to directly measure the end-to-end distance distribution of a phosphorylatable peptide derived from the human microtubule associated protein tau. Our results show that phosphorylation at threonine or serine extends the end-to-end distance and increases the effective persistence length of the tested model peptides. Unexpectedly, the extension is independent of salt concentration, suggestive of a nonelectrostatic origin. The phosphorylation extension and stiffening effect provides a peptide-scale physical interpretation for the posttranslational regulation of the highly abundant protein-protein interactions found in disordered proteins, as well as a potential insight into the regulatory mechanism of the tau protein's microtubule binding activity.


Assuntos
Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas tau/química , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Peptídeos/metabolismo , Fosforilação , Conformação Proteica , Serina/química , Treonina/química , Proteínas tau/metabolismo
12.
Proteins ; 84(4): 435-47, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26800099

RESUMO

Knowing the determinants of conformational specificity is essential for understanding protein structure, stability, and fold evolution. To address this issue, a novel statistical measure of energetic compatibility between sequence and structure was developed using an experimentally validated model of the energetics of the native state ensemble. This approach successfully matched sequences from a diverse subset of the human proteome to their respective folds. Unexpectedly, significant energetic compatibility between ostensibly unrelated sequences and structures was also observed. Interrogation of these matches revealed a general framework for understanding the origins of conformational specificity within a proteome: specificity is a complex function of both the ability of a sequence to adopt folds other than the native, and ability of a fold to accommodate sequences other than the native. The regional variation in energetic compatibility indicates that the compatibility is dominated by incompatibility of sequence for alternative fold segments, suggesting that evolution of protein sequences has involved substantial negative selection, with certain segments serving as "gatekeepers" that presumably prevent alternative structures. Beyond these global trends, a size dependence exists in the degree to which the energetic compatibility is determined from negative selection, with smaller proteins displaying more negative selection. This partially explains how short sequences can adopt unique folds, despite the higher probability in shorter proteins for small numbers of mutations to increase compatibility with other folds. In providing evolutionary ground rules for the thermodynamic relationship between sequence and fold, this framework imparts valuable insight for rational design of unique folds or fold switches.


Assuntos
Evolução Molecular , Genoma Humano , Proteoma/química , Seleção Genética , Sequência de Aminoácidos , Bases de Dados de Proteínas , Humanos , Mutação , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteoma/genética , Proteoma/metabolismo , Termodinâmica
13.
Proc Natl Acad Sci U S A ; 109(11): 4134-9, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22388747

RESUMO

Ligands for several transcription factors can act as agonists under some conditions and antagonists under others. The structural and molecular bases of such effects are unknown. Previously, we demonstrated how the folding of intrinsically disordered (ID) protein sequences, in particular, and population shifts, in general, could be used to mediate allosteric coupling between different functional domains, a model that has subsequently been validated in several systems. Here it is shown that population redistribution within allosteric systems can be used as a mechanism to tune protein ensembles such that a given ligand can act as both an agonist and an antagonist. Importantly, this mechanism can be robustly encoded in the ensemble, and does not require that the interactions between the ligand and the protein differ when it is acting either as an agonist or an antagonist. Instead, the effect is due to the relative probabilities of states prior to the addition of the ligand. The ensemble view of allostery that is illuminated by these studies suggests that rather than being seen as switches with fixed responses to allosteric activation, ensembles can evolve to be "functionally pluripotent," with the capacity to up or down regulate activity in response to a stimulus. This result not only helps to explain the prevalence of intrinsic disorder in transcription factors and other cell signaling proteins, it provides important insights about the energetic ground rules governing site-to-site communication in all allosteric systems.


Assuntos
Proteínas/agonistas , Proteínas/antagonistas & inibidores , Regulação Alostérica , Modelos Biológicos , Estrutura Terciária de Proteína , Termodinâmica
14.
J Am Chem Soc ; 136(29): 10315-24, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24950171

RESUMO

Mutations in the epitopes of antigenic proteins can confer viral resistance to antibody-mediated neutralization. However, the fundamental properties that characterize epitope residues and how mutations affect antibody binding to alter virus susceptibility to neutralization remain largely unknown. To address these questions, we used an ensemble-based algorithm to characterize the effects of mutations on the thermodynamics of protein conformational fluctuations. We applied this method to the envelope protein domain III (ED3) of two medically important flaviviruses: West Nile and dengue 2. We determined an intimate relationship between the susceptibility of a residue to thermodynamic perturbations and epitope location. This relationship allows the successful identification of the primary epitopes in each ED3, despite their high sequence and structural similarity. Mutations that allow the ED3 to evade detection by the antibody either increase or decrease conformational fluctuations of the epitopes through local effects or long-range interactions. Spatially distant interactions originate in the redistribution of conformations of the ED3 ensembles, not through a mechanically connected array of contiguous amino acids. These results reconcile previous observations of evasion of neutralization by mutations at a distance from the epitopes. Finally, we established a quantitative correlation between subtle changes in the conformational fluctuations of the epitope and large defects in antibody binding affinity. This correlation suggests that mutations that allow viral growth, while reducing neutralization, do not generate significant structural changes and underscores the importance of protein fluctuations and long-range interactions in the mechanism of antibody-mediated neutralization resistance.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Dengue/metabolismo , Proteínas do Envelope Viral , Vírus do Nilo Ocidental/metabolismo , Algoritmos , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação de Anticorpos , Simulação por Computador , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Mapeamento de Epitopos , Dados de Sequência Molecular , Mutação , Testes de Neutralização , Conformação Proteica , Termodinâmica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/imunologia
15.
PLoS Comput Biol ; 9(10): e1003247, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130469

RESUMO

An algorithm is presented that returns the optimal pairwise gapped alignment of two sets of signed numerical sequence values. One distinguishing feature of this algorithm is a flexible comparison engine (based on both relative shape and absolute similarity measures) that does not rely on explicit gap penalties. Additionally, an empirical probability model is developed to estimate the significance of the returned alignment with respect to randomized data. The algorithm's utility for biological hypothesis formulation is demonstrated with test cases including database search and pairwise alignment of protein hydropathy. However, the algorithm and probability model could possibly be extended to accommodate other diverse types of protein or nucleic acid data, including positional thermodynamic stability and mRNA translation efficiency. The algorithm requires only numerical values as input and will readily compare data other than protein hydropathy. The tool is therefore expected to complement, rather than replace, existing sequence and structure based tools and may inform medical discovery, as exemplified by proposed similarity between a chlamydial ORFan protein and bacterial colicin pore-forming domain. The source code, documentation, and a basic web-server application are available.


Assuntos
Algoritmos , Biologia Computacional/métodos , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Proteínas de Bactérias , Distribuição de Qui-Quadrado , Análise por Conglomerados , Bases de Dados de Proteínas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Software
17.
Biochemistry ; 52(5): 949-58, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23350874

RESUMO

The native states of globular proteins have been accessed in atomic detail by X-ray crystallography and nuclear magnetic resonance spectroscopy, yet characterization of denatured proteins beyond global metrics has proven to be elusive. Denatured proteins have been observed to exhibit global geometric properties of a random coil polymer. However, this does not preclude the existence of nonrandom, local conformational bias that may be significant for protein folding and function. Indeed, circular dichroism (CD) spectroscopy and other methods have suggested that the denatured state contains considerable local bias to the polyproline II (PII) conformation. Here, we develop predictive models to determine the extent that temperature and the chemical denaturant urea modulate PII propensity. In agreement with our predictive model, PII propensity is observed experimentally to decrease with an increase in temperature. Conversely, urea appears to promote the PII conformation as determined by CD and isothermal titration calorimetry. Importantly, the calorimetric data are in quantitative agreement with a model that predicts the stability of the PII helix relative to other denatured state conformations based upon solvent accessible surface area and experimentally measured Gibbs transfer free energies. The ability of urea to promote the PII conformation can be attributed to the favorable interaction of urea with the peptide backbone. Thus, perturbing denatured states by temperature or cosolutes has subtle, yet opposing, impacts on local PII conformational biases. These results have implications for protein folding as well as for the function of signaling proteins that bind proline-rich targets in globular or intrinsically disordered proteins.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Peptídeos/química , Proteínas Son Of Sevenless/química , Ureia/química , Sequência de Aminoácidos , Animais , Calorimetria , Dicroísmo Circular , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Temperatura , Termodinâmica
18.
J Biol Chem ; 287(32): 26777-87, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22669939

RESUMO

Intrinsically disordered (ID) sequence segments are abundant in cell signaling proteins and transcription factors. Because ID regions commonly fold as part of their intracellular function, it is crucial to understand the folded states as well as the transitions between the unfolded and folded states. Specifically, it is important to determine 1) whether large ID segments contain different thermodynamically and/or functionally distinct regions, 2) whether any ID regions fold upon activation, 3) the degree of coupling between the different ID regions, and 4) whether the stability of ID domains is a determinant of function. In this study, we thermodynamically characterized the full-length ID N-terminal domain (NTD) of human glucocorticoid receptor (GR) and two of its naturally occurring translational isoforms. The protective osmolyte trimethylamine N-oxide (TMAO) was used to induce folding transitions. Each of the three NTD isoforms was found to undergo a cooperative folding transition that is thermodynamically indistinguishable (based on m-values) from that of a globular protein of similar size. The extrapolated stabilities for the NTD isoforms showed clear correlation with the known activities of their corresponding GR translational isoforms. The data reveal that the full-length NTD can be viewed as having at least two thermodynamically coupled regions, a functional region, which is indispensable for GR transcriptional activity, and a regulatory region, the length of which serves to regulate the stability of NTD and thus the activity of GR. These results suggest a new functional paradigm whereby steroid hormone receptors in particular and ID proteins in general can have multiple functionally distinct ID regions that interact and modulate the stability of important functional sites.


Assuntos
Receptores de Glucocorticoides/química , Termodinâmica , Dicroísmo Circular , Humanos , Conformação Proteica , Receptores de Glucocorticoides/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Triptofano/química
20.
Top Curr Chem ; 337: 95-121, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23543318

RESUMO

Proteins exist as dynamic ensembles of molecules, implying that protein amino acid sequences evolved to code for both the ground state structure as well as the entire energy landscape of excited states. Accumulating theoretical and experimental evidence suggests that enzymes use such conformational fluctuations to facilitate allosteric processes important for substrate binding and possibly catalysis. This phenomenon can be clearly demonstrated in Escherichia coli adenylate kinase, where experimentally observed local unfolding of the LID subdomain, as opposed to a more commonly postulated rigid-body opening motion, is related to substrate binding. Because "entropy promoting" glycine mutations designed to increase specifically the local unfolding of the LID domain also affect substrate binding, changes in the excited energy landscape effectively tune the function of this enzyme without changing the ground state structure or the catalytic site. Thus, additional thermodynamic information, above and beyond the single folded structure of an enzyme-substrate complex, is likely required for a full and quantitative understanding of how enzymes work.


Assuntos
Adenilato Quinase/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Adenilato Quinase/metabolismo , Regulação Alostérica , Proteínas de Escherichia coli/metabolismo , Glicina/química , Mutação , Conformação Proteica , Desdobramento de Proteína , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA