Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841879

RESUMO

Female Pacific salmon often experience higher mortality than males during their once-in-a-lifetime up-river spawning migration, particularly when exposed to secondary stressors (e.g. high temperatures). However, the underlying mechanisms remain unknown. One hypothesis is that female Pacific salmon hearts are more oxygen-limited than those of males and are less able to supply oxygen to the body's tissues during this demanding migration. Notably, female hearts have higher coronary blood flow, which could indicate a greater reliance on this oxygen source. Oxygen limitations can develop from naturally occurring coronary blockages (i.e. coronary arteriosclerosis) found in mature salmon hearts. If female hearts rely more heavily on coronary blood flow but experience similar arteriosclerosis levels as males, they will have disproportionately impaired aerobic performance. To test this hypothesis, we measured resting (RMR) and maximum metabolic rate (MMR), aerobic scope (AS) and acute upper thermal tolerance in coho salmon (Oncorhynchus kisutch) with an intact or artificially blocked coronary oxygen supply. We also assessed venous blood oxygen and chemistry (cortisol, ions and metabolite concentrations) at different time intervals during recovery from exhaustive exercise. We found that coronary blockage impaired MMR, AS and the partial pressure of oxygen in venous blood (PvO2) during exercise recovery but did not differ between sexes. Coronary ligation lowered acute upper thermal tolerance by 1.1°C. Although we did not find evidence of enhanced female reliance on coronary supply, our findings highlight the importance of coronary blood supply for mature wild salmon, where migration success may be linked to cardiac performance, particularly during warm water conditions.


Assuntos
Circulação Coronária , Oncorhynchus kisutch , Animais , Feminino , Circulação Coronária/fisiologia , Masculino , Oncorhynchus kisutch/fisiologia , Consumo de Oxigênio/fisiologia , Metabolismo Basal
2.
J Fish Biol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840436

RESUMO

Passive integrated transponder (PIT) technology is a leading tool for tracking fish in freshwater systems. PIT is highly applicable for assessing fish passage at anthropogenic infrastructure (e.g., dams and floodgates); however, there are often complications in operating PIT antennas near these structures due to the ambient electromagnetic interference of metal and power-supply equipment. We designed a PIT antenna that is resistant to the effects of ambient electromagnetic interference (AEMI). This design uses lobes with balanced polarity within the antenna to neutralize AEMI within the vicinity of the antenna. This novel PIT antenna provides a more effective and cost-efficient option for researchers tracking fish in environments with high AEMI.

3.
J Fish Biol ; 103(2): 280-291, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37102404

RESUMO

Metabolic scope represents the aerobic energy budget available to an organism to perform non-maintenance activities (e.g., escape a predator, recover from a fisheries interaction, compete for a mate). Conflicting energetic requirements can give rise to ecologically relevant metabolic trade-offs when energy budgeting is constrained. The objective of this study was to investigate how aerobic energy is utilized when individual sockeye salmon (Oncorhynchus nerka) are exposed to multiple acute stressors. To indirectly assess metabolic changes in free-swimming individuals, salmon were implanted with heart rate biologgers. The animals were then exercised to exhaustion or briefly handled as a control, and allowed to recover from this stressor for 48 h. During the first 2 h of the recovery period, individual salmon were exposed to 90 ml of conspecific alarm cues or water as a control. Heart rate was recorded throughout the recovery period. Recovery effort and time was higher in exercised fish, relative to control fish, whereas exposure to an alarm cue had no effect on either of these metrics. Individual routine heart rate was negatively correlated with recovery time and effort. Together, these findings suggest that metabolic energy allocation towards exercise recovery (i.e., an acute stressor; handling, chase, etc.) trumps anti-predator responses in salmon, although individual variation may mediate this effect at the population level.


Assuntos
Migração Animal , Salmão , Animais , Salmão/fisiologia , Migração Animal/fisiologia , Peixes , Natação/fisiologia , Consumo de Oxigênio/fisiologia
4.
Mol Ecol ; 31(1): 134-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614262

RESUMO

Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5-7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1-2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.


Assuntos
Pesqueiros , Salmão , Migração Animal , Animais , Colúmbia Britânica , Interação Gene-Ambiente , Salmão/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-31726105

RESUMO

White sturgeon are the largest freshwater fish in North America and are the focus of an intense catch-and-release (C&R) fishery; the effects are largely unknown. We assessed the effect of fight and handling time, water temperature, river discharge rate, and fish size on physiological and reflex impairment responses of wild white sturgeon to angling. Sixty of these fish were tagged with acoustic transmitters to assess survival and post-release behaviour. Survival was high (100%). Water temperature and discharge influenced post-capture blood physiology. Specifically, lactate, chloride, and cortisol concentrations were elevated in individuals fought longer, and captured at higher water temperatures and river discharge. Cortisol was affected by fish size, with lower concentrations found in larger individuals. Only lactate and chloride were positively related to reflex impairment scores. Post-release movements were correlated with physiological state, fight characteristics and the environment. Specifically, higher blood lactate and chloride and those with longer fight times moved shorter distances after release. Contrastingly, higher levels of circulating glucose and potassium, as well as larger fish captured during periods of high discharge moved longer distances. Sturgeon tended to move shorter distances and at slower rates when reflex impairment was high, although reflex impairment in general did not explain a significant proportion of the variance in any movement metric. Our results show intriguing variance in the physiological and behavioural response of individual white sturgeon to C&R angling, with some degree of environmental dependence, and highlights the importance of understanding drivers of such variation when managing fisheries.


Assuntos
Comportamento Animal , Pesqueiros/normas , Peixes/fisiologia , Hidrocortisona/metabolismo , Mortalidade/tendências , Reflexo/fisiologia , Estresse Fisiológico , Animais , Atividades Humanas , Humanos , Rios , Temperatura , Poluentes Químicos da Água/toxicidade
6.
J Environ Manage ; 254: 109820, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31733471

RESUMO

Co-management is widely seen as a way of improving environmental governance and empowering communities. When successful, co-management enhances the validity and legitimacy of decision-making, while providing stakeholders with influence over processes and outcomes that directly impact them. However, our research with participants in co-management across several cases leads us to argue that many of the individuals who contribute to co-management are subject to significant personal stress arising from both the logistical and social/emotional demands of participation in these processes. We argue that the literature on co-management has touched on this only indirectly, and that personal stress is a major challenge for participants that ought to be integrated into research agendas and addressed by policy-makers. In this article, we review the contours of the personal stress issue as it has appeared in our observations of co-management events and interviews with participants. While these findings are partial and preliminary, we argue that personal stress has theoretical and practical significance to the broader literature and process design. We conclude the article with recommendations for participants, researchers and policy-makers about how to consider and respond to problems of personal stress.


Assuntos
Conservação dos Recursos Naturais , Política Ambiental , Tomada de Decisões , Humanos , Encaminhamento e Consulta
7.
J Exp Biol ; 222(Pt 13)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31209112

RESUMO

An organism's ability to respond effectively to environmental change is critical to its survival. Yet, life stage and overall condition can dictate tolerance thresholds to heightened environmental stressors, such that stress may not be equally felt across individuals and at all times. Also, the transcriptional responses induced by environmental changes can reflect both generalized responses as well as others that are highly specific to the type of change being experienced. Thus, if transcriptional biomarkers specific to a stressor, even under multi-stressor conditions, can be identified, the biomarkers could then be applied in natural environments to determine when and where an individual experiences such a stressor. Here, we experimentally challenged juvenile Chinook salmon (Oncorhynchus tshawytscha) to validate candidate gill gene expression biomarkers. A sophisticated experimental design manipulated salinity (freshwater, brackish water and seawater), temperature (10, 14 and 18°C) and dissolved oxygen (normoxia and hypoxia) in all 18 possible combinations for 6 days using separate trials for three smolt statuses (pre-smolt, smolt and de-smolt). In addition, changes in juvenile behaviour, plasma variables, gill Na+/K+-ATPase activity, body size, body morphology and skin pigmentation supplemented the gene expression responses. We identified biomarkers specific to salinity and temperature that transcended the multiple stressors, smolt status and mortality (live, dead and moribund). Similar biomarkers for dissolved oxygen were not identified. This work demonstrates the unique power of gene expression biomarkers to identify a specific stressor even under multi-stressor conditions, and we discuss our next steps for hypoxia biomarkers using an RNA-seq study.


Assuntos
Expressão Gênica/fisiologia , Marcadores Genéticos/fisiologia , Salinidade , Salmão/fisiologia , Temperatura , Animais , Características de História de Vida , Oxigênio/química , Oxigênio/metabolismo , Salmão/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-30292565

RESUMO

Fish vitality can be measured by classifying reflex impairments (i.e., a visual impression of the ability to respond to induced stimuli) and visible injuries. These metrics can predict survival probability following release from fisheries, and monitoring physiological disturbances following capture can help understand mechanisms of mortality. To test the hypothesis that severity of injury and reflex impairment influences the time course of physiological recovery, coho salmon (Oncorhynchus kisutch) were held for up to 84-h following capture by purse seine. We classified reflex impairments and visible dermal injuries, and through repeated blood sampling, assessed metrics indicative of stress, exhaustion, and osmoregulatory disturbances. Reflex-impairments and blood lactate levels suggested fish were exhausted upon capture but recovered after 48 h. Conversely, fish with dermal injuries showed disruptions to ion homeostasis that were greater in more severely injured fish and increased over time. While reflex impairments may predict short term post-release mortality, the prolonged physiological disturbances caused by dermal injuries are likely to be responsible for delayed mortality; our results suggest that disruptions to ion homeostasis is a possible mechanism of post-release mortality.


Assuntos
Oncorhynchus kisutch/fisiologia , Pele/lesões , Animais , Conservação dos Recursos Naturais , Homeostase , Ácido Láctico/sangue , Reflexo , Estresse Fisiológico
9.
BMC Genomics ; 19(1): 749, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326831

RESUMO

BACKGROUND: Pacific salmon (Oncorhynchus spp.) serve as good biological indicators of the breadth of climate warming effects on fish because their anadromous life cycle exposes them to environmental challenges in both marine and freshwater environments. Our study sought to mine the extensive functional genomic studies in fishes to identify robust thermally-responsive biomarkers that could monitor molecular physiological signatures of chronic thermal stress in fish using non-lethal sampling of gill tissue. RESULTS: Candidate thermal stress biomarkers for gill tissue were identified using comparisons among microarray datasets produced in the Molecular Genetics Laboratory, Pacific Biological Station, Nanaimo, BC, six external, published microarray studies on chronic and acute temperature stress in salmon, and a comparison of significant genes across published studies in multiple fishes using deep literature mining. Eighty-two microarray features related to 39 unique gene IDs were selected as candidate chronic thermal stress biomarkers. Most of these genes were identified both in the meta-analysis of salmon microarray data and in the literature mining for thermal stress markers in salmonids and other fishes. Quantitative reverse transcription PCR (qRT-PCR) assays for 32 unique genes with good efficiencies across salmon species were developed, and their activity in response to thermally challenged sockeye salmon (O. nerka) and Chinook salmon (O. tshawytscha) (cool, 13-14 °C and warm temperatures 18-19 °C) over 5-7 days was assessed. Eight genes, including two transcripts of each SERPINH1 and HSP90AA1, FKBP10, MAP3K14, SFRS2, and EEF2 showed strong and robust chronic temperature stress response consistently in the discovery analysis and both sockeye and Chinook salmon validation studies. CONCLUSIONS: The results of both discovery analysis and gene expression showed that a panel of genes involved in chaperoning and protein rescue, oxidative stress, and protein biosynthesis were differentially activated in gill tissue of Pacific salmon in response to elevated temperatures. While individually, some of these biomarkers may also respond to other stressors or biological processes, when expressed in concert, we argue that a biomarker panel comprised of some or all of these genes could provide a reliable means to specifically detect thermal stress in field-caught salmon.


Assuntos
Marcadores Genéticos/genética , Resposta ao Choque Térmico/genética , Salmonidae/genética , Salmonidae/fisiologia , Animais , Perfilação da Expressão Gênica , Perfil Genético , Brânquias/metabolismo
10.
J Aquat Anim Health ; 30(3): 191-200, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29799640

RESUMO

Multiple species and stocks of Pacific salmon Oncorhynchus spp. have experienced large declines in the number of returning adults over a wide region of the Pacific Northwest due to poor marine survival (low smolt-to-adult survival rates). One possible explanation for reduced survival is thiamine deficiency. Thiamine (vitamin B1 ) is an essential vitamin with an integral role in many metabolic processes, and thiamine deficiency is an important cause of salmonid mortality in the Baltic Sea and in the Laurentian Great Lakes. To assess this possibility, we (1) compared muscle thiamine content over time in a holding experiment using Fraser River (British Columbia) Sockeye Salmon O. nerka to establish whether adults that died during the holding period had lower thiamine levels than survivors, (2) measured infectious loads of multiple pathogens in held fish, and (3) measured egg thiamine content from four species of Pacific salmon collected on Fraser River spawning grounds. Chinook Salmon O. tshawytscha had the lowest egg thiamine, followed by Sockeye Salmon; however, egg thiamine concentrations were above levels known to cause overt fry mortality. Thiamine vitamers in the muscle of Fraser River adult Sockeye Salmon shifted over a 13-d holding period, with a precipitous decline in thiamine pyrophosphate (the active form of thiamine used in enzyme reactions) in surviving fish. Survivors also carried lower loads of Flavobacterium psychrophilum than fish that died during in the holding period. Although there is no evidence of thiamine deficiency in the adults studied, questions remain about possible thiamine metabolism-fish pathogen relationships that influence survival.


Assuntos
Doenças dos Peixes/etiologia , Doenças dos Peixes/fisiopatologia , Músculo Esquelético/fisiologia , Oncorhynchus , Deficiência de Tiamina/veterinária , Animais , Colúmbia Britânica , Feminino , Doenças dos Peixes/epidemiologia , Oncorhynchus/crescimento & desenvolvimento , Oncorhynchus/fisiologia , Óvulo/fisiologia , Salmão/fisiologia , Especificidade da Espécie , Tiamina/fisiologia , Deficiência de Tiamina/epidemiologia , Deficiência de Tiamina/fisiopatologia
11.
J Exp Biol ; 219(Pt 12): 1922-31, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27059065

RESUMO

Aerobic scope (AS) has been proposed as a functional measurement that can be used to make predictions about the thermal niche of aquatic ectotherms and hence potential fitness outcomes under future warming scenarios. Some salmonid species and populations, for example, have been reported to exhibit different thermal profiles for their AS curves such that AS peaks around the modal river temperature encountered during the upriver spawning migration, suggesting species- and population-level adaptations to river temperature regimes. Interestingly, some other salmonid species and populations have been reported to exhibit AS curves that maintain an upwards trajectory throughout the ecologically relevant temperature range rather than peaking at a modal temperature. To shed further light on this apparent dichotomy, we used adult coho salmon (Oncorhynchus kisutch) to test the prediction that peak AS coincides with population-specific, historically experienced river temperatures. We assessed AS at 10 and 15°C, which represent a typical river migration temperature and the upper limit of the historically experienced temperature range, respectively. We also examined published data on AS in juvenile coho salmon in relation to new temperature data measured from their freshwater rearing environments. In both cases, AS was either maintained or increased modestly throughout the range of ecologically relevant temperatures. In light of existing evidence and the new data presented here, we suggest that when attempting to understand thermal optima for Pacific salmon and other species across life stages, AS is a useful metric of oxygen transport capacity but other thermally sensitive physiological indices of performance and fitness should be considered in concert.


Assuntos
Aclimatação , Oncorhynchus kisutch/fisiologia , Consumo de Oxigênio , Migração Animal , Animais , Colúmbia Britânica , Feminino , Masculino , Oncorhynchus kisutch/crescimento & desenvolvimento , Rios , Temperatura
12.
Ecol Appl ; 26(4): 959-78, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27509741

RESUMO

Few estimates of migration rates or descriptions of behavior or survival exist for wild populations of out-migrating Pacific salmon smolts from natal freshwater rearing areas to the ocean. Using acoustic transmitters and fixed receiver arrays across four years (2010-2013), we tracked the migration of > 1850 wild sockeye salmon (Oncorhynchus nerka) smolts from Chilko Lake, British Columbia, to the coastal Pacific Ocean (> 1000 km distance). Cumulative survival to the ocean ranged 3-10% among years, although this may be slightly underestimated due to technical limitations at the final receiver array. Distinct spatial patterns in both behavior and survival were observed through all years. In small, clear, upper-river reaches, downstream migration largely occurred at night at speeds up to 50 km/d and coincided with poor survival. Among years, only 57-78% of smolts survived the first 80 km. Parallel laboratory experiments revealed excellent short-term survival and unhindered swimming performance of dummy-tagged smolts, suggesting that predators rather than tagging effects were responsible for the initial high mortality of acoustic-tagged smolts. Migration speeds increased in the Fraser River mainstem (~220 km/d in some years), diel movement patterns ceased, and smolt survival generally exceeded 90% in this segment. Marine movement rates and survival were variable across years, with among-year segment-specific survival being the most variable and lowest (19-61%) during the final (and longest, 240 km) marine migration segment. Osmoregulatory preparedness was not expected to influence marine survival, as smolts could maintain normal levels of plasma chloride when experimentally exposed to saltwater (30 ppt) immediately upon commencing their migration from Chilko Lake. Transportation of smolts downstream generally increased survival to the farthest marine array. The act of tagging may have affected smolts in the marine environment in some years as dummy-tagged fish had poorer survival than control fish when transitioned to saltwater in laboratory-based experiments. Current fisheries models for forecasting the number of adult sockeye returning to spawn have been inaccurate in recent years and generally do not incorporate juvenile or smolt survival information. Our results highlight significant potential for early migration conditions to influence adult recruitment.


Assuntos
Migração Animal/fisiologia , Animais Selvagens , Ritmo Circadiano , Mortalidade , Salmão/fisiologia , Sistemas de Identificação Animal , Animais , Canadá , Oceano Pacífico , Rios , Fatores de Tempo
13.
J Anim Ecol ; 85(5): 1307-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457279

RESUMO

Understanding the limits of consumption is important for determining trophic influences on ecosystems and predator adaptations to inconsistent prey availability. Fishes have been observed to consume beyond what is sustainable (i.e. digested on a daily basis), but this phenomenon of hyperphagia (or binge-feeding) is largely overlooked. We expect hyperphagia to be a short-term (1-day) event that is facilitated by gut volume providing capacity to store consumed food during periods of high prey availability to be later digested. We define how temperature, body size and food availability influence the degree of binge-feeding by comparing field observations with laboratory experiments of bull trout (Salvelinus confluentus), a large freshwater piscivore that experiences highly variable prey pulses. We also simulated bull trout consumption and growth during salmon smolt outmigrations under two scenarios: 1) daily consumption being dependent upon bioenergetically sustainable rates and 2) daily consumption being dependent upon available gut volume (i.e. consumption is equal to gut volume when empty and otherwise 'topping off' based on sustainable digestion rates). One-day consumption by laboratory-held bull trout during the first day of feeding experiments after fasting exceeded bioenergetically sustainable rates by 12- to 87-fold at low temperatures (3 °C) and by  Ëœ1·3-fold at 20 °C. The degree of binge-feeding by bull trout in the field was slightly reduced but largely in agreement with laboratory estimates, especially when prey availability was extremely high [during a sockeye salmon (Oncorhynchus nerka) smolt outmigration and at a counting fence where smolts are funnelled into high densities]. Consumption by bull trout at other settings were lower and more variable, but still regularly hyperphagic. Simulations demonstrated the ability to binge-feed increased cumulative consumption (16-32%) and cumulative growth (19-110%) relative to only feeding at bioenergetically sustainable rates during the  Ëœ1-month smolt outmigration period. Our results indicate the ability for predators to maximize short-term consumption when prey are available can be extreme and is limited primarily by gut volume, then mediated by temperature; thus, predator-prey relationships may be more dependent upon prey availability than traditional bioenergetic models suggest. Binge-feeding has important implications for energy budgets of consumers as well as acute predation impacts on prey.


Assuntos
Comportamento Predatório , Temperatura , Truta/fisiologia , Animais , Tamanho Corporal , Peso Corporal , Truta/crescimento & desenvolvimento
14.
J Anim Ecol ; 85(4): 948-59, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27159553

RESUMO

Animal migrations are costly and are often characterized by high predation risk for individuals. Three of the most oft-assumed mechanisms for reducing risk for migrants are swamping predators with high densities, specific timing of migrations and increased body size. Assessing the relative importance of these mechanisms in reducing predation risk particularly for migrants is generally lacking due to the difficulties in tracking the fate of individuals and population-level characteristics simultaneously. We used acoustic telemetry to track migration behaviour and survival of juvenile sockeye salmon (Oncorhynchus nerka) smolts released over a wide range of conspecific outmigration densities in a river associated with poor survival. The landscape was indeed high risk; smolt survival was poor (˜68%) over 13·5 km of river examined even though migration was rapid (generally <48 h). Our results demonstrate that smolts largely employ swamping of predators to reduce predation risk. Increased densities of co-migrant conspecifics dramatically improved survival of smolts. The strong propensity for nocturnal migration resulted in smolts pausing downstream movements until the next nightfall, greatly increasing relative migration durations for smolts that could not traverse the study area in a single night. Smolt size did not appear to impact predation risk, potentially due to unique characteristics of the system or our inability to tag the entire size range of outmigrants. Movement behaviours were important in traversing this high-risk landscape and provide rare evidence for swamping to effectively reduce individual predation risk.


Assuntos
Migração Animal/fisiologia , Ritmo Circadiano , Comportamento Predatório , Salmão/fisiologia , Animais , Tamanho Corporal , Colúmbia Britânica , Rios , Telemetria
15.
Artigo em Inglês | MEDLINE | ID: mdl-27316822

RESUMO

Maternally-derived hormones in oocytes, such as glucocorticoids (GCs), play a crucial role in embryo development in oviparous taxa. In fishes, maternal stressor exposure increases circulating and egg cortisol levels, the primary GC in fishes, as well as induces oxidative stress. Elevated egg cortisol levels modify offspring traits but whether maternal oxidative stress correlates with circulating and egg cortisol levels, and whether maternal/egg cortisol levels correlate with offspring oxidative stress have yet to be determined. The objective of this study was to examine the relationships among maternal and egg cortisol, and maternal and offspring oxidative stress to provide insight into the potential intergenerational effects of stressor exposure in sockeye salmon (Oncorhynchus nerka). Antioxidant concentration and oxidative stress were measured in maternal tissues (plasma, brain, heart and liver) as well as offspring developmental stages (pre-fertilization, 24h post-fertilization, eyed, and hatch), and were compared to both naturally-occurring and experimentally-elevated (via cortisol egg bath) levels of cortisol in eggs. Oxygen radical absorptive capacity of tissues from maternal sockeye salmon was measured spectrophotometrically and was not correlated with maternal or egg cortisol concentrations. Also, naturally-occurring and experimentally-elevated cortisol levels in eggs (to mimic maternal stress) did not affect oxidative stress or antioxidant capacity of the offspring. We conclude that the metrics of maternal stress examined in sockeye salmon (i.e., maternal/egg cortisol, maternal oxidative stress) are independent of each other, and that egg cortisol content does not influence offspring oxidative stress.


Assuntos
Hidrocortisona/metabolismo , Óvulo/metabolismo , Estresse Oxidativo , Salmão/metabolismo , Análise de Variância , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Feminino , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Hidrocortisona/sangue , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , Oócitos/metabolismo , Salmão/embriologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-27063208

RESUMO

The generalized energy budget for fish (i.e., Energy Consumed=Metabolism+Waste+Growth) is as relevant today as when it was first proposed decades ago and serves as a foundational concept in fish biology. Yet, generating accurate measurements of components of the bioenergetics equation in wild fish is a major challenge. How often does a fish eat and what does it consume? How much energy is expended on locomotion? How do human-induced stressors influence energy acquisition and expenditure? Generating answers to these questions is important to fisheries management and to our understanding of adaptation and evolutionary processes. The advent of electronic tags (transmitters and data loggers) has provided biologists with improved opportunities to understand bioenergetics in wild fish. Here, we review the growing diversity of electronic tags with a focus on sensor-equipped devices that are commercially available (e.g., heart rate/electrocardiogram, electromyogram, acceleration, image capture). Next, we discuss each component of the bioenergetics model, recognizing that most research to date has focused on quantifying the activity component of metabolism, and identify ways in which the other, less studied components (e.g., consumption, specific dynamic action component of metabolism, somatic growth, reproductive investment, waste) could be estimated remotely. We conclude with a critical but forward-looking appraisal of the opportunities and challenges in using existing and emerging electronic sensor-tags for the study of fish energetics in the wild. Electronic tagging has become a central and widespread tool in fish ecology and fisheries management; the growing and increasingly affordable toolbox of sensor tags will ensure this trend continues, which will lead to major advances in our understanding of fish biology over the coming decades.


Assuntos
Metabolismo Energético , Peixes/metabolismo , Telemetria/veterinária , Acelerometria/veterinária , Animais , Animais Selvagens/metabolismo , Ecossistema , Eletromiografia/veterinária , Peixes/fisiologia , Frequência Cardíaca , Modelos Biológicos , Natação/fisiologia
17.
J Environ Manage ; 184(Pt 2): 380-388, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27745770

RESUMO

This article examines how potential users of scientific and local/traditional/experiential knowledge evaluate new claims to knowing, using 67 interviews with government employees and non-governmental stakeholders involved in co-managing salmon fisheries in Canada's Fraser River. Research has consistently shown that there are major obstacles to moving new knowledge into policy, management, and public domains. New concepts such as Knowledge Exchange (KE) and Knowledge Mobilization (KMb) are being used to investigate these obstacles, but the processes by which potential users evaluate (sometimes competing) knowledge claims remain poorly understood. We use concepts from the sociology of science and find that potential users evaluate new knowledge claims based on three broad criteria: (1) the perceived merits of the claim, (2) perceptions of the character and motivation of the claimant, and (3) considerations of the social and political context of the claim. However, government employees and stakeholders have different interpretations of these criteria, leading to different knowledge preferences and normative expectations of scientists and other claimants. We draw both theoretical and practical lessons from these findings. With respect to theory, we argue that the sociology of science provides valuable insights into the political dimensions of knowledge and should be explicitly incorporated into KE/KMb research. With respect to practice, our findings underline the need for scientists and other claimants to make conscious decisions about whose expectations they hope to meet in their communications and engagement activities.


Assuntos
Pesqueiros , Política , Opinião Pública , Animais , Colúmbia Britânica , Canadá , Comunicação , Humanos , Disseminação de Informação , Conhecimento , Organizações , Percepção , Rios , Salmão , Sociologia/métodos
18.
Ecol Appl ; 25(7): 1757-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591444

RESUMO

Research on fisheries bycatch and discards frequently involves the assessment of reflex impairment, injury, or blood physiology as means of quantifying vitality and predicting post-release mortality, but exceptionally few studies have used all three metrics concurrently. We conducted an experimental purse seine fishery for Pacific salmon in the Juan de Fuca Strait, with a focus on understanding the relationships between different sublethal indicators and whether mortality could be predicted in coho salmon (Oncorhynchus kisutch) bycatch. We monitored mortality using a ~24-h net pen experiment (N = 118) and acoustic telemetry (N = 50), two approaches commonly used to assess bycatch mortality that have rarely been directly compared. Short-term mortality was 21% in the net pen experiment (~24 h) and estimated at 20% for telemetry-tagged fish (~48-96 h). Mortality was predicted by injury and reflex impairment, but only in the net pen experiment. Higher reflex impairment was mirrored by perturbations to plasma ions and lactate, supporting the notion that reflex impairment can be used as a proxy for departure from physiological homeostasis. Reflex impairment also significantly correlated with injury scores, while injury scores were significantly correlated with plasma ion concentrations. The higher time-specific mortality rate in the net pen and the fact that reflexes and injury corresponded with mortality in that experiment, but not in the telemetry-tagged fish released into the wild could be explained partly by confinement stress. While holding experiments offer the potential to provide insights into the underlying causes of mortality, chronic confinement stress can complicate the interpretation of patterns and ultimately affect mortality rates. Collectively, these results help refine our understanding of the different sublethal metrics used to assess bycatch and the mechanisms that can lead to mortality.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Oncorhynchus kisutch/lesões , Estresse Fisiológico , Animais , Colúmbia Britânica , Telemetria , Fatores de Tempo
19.
Artigo em Inglês | MEDLINE | ID: mdl-25660296

RESUMO

Intergenerational effects of stress have been reported in a wide range of taxa; however, few researchers have examined the intergenerational consequences of oxidative stress. Oxidative stress occurs in living organisms when reactive oxygen species remain unquenched by antioxidant defense systems and become detrimental to cells. In fish, it is unknown how maternal oxidative stress and antioxidant capacity influence offspring quality. The semelparous, migratory life history of Pacific salmon (Oncorhynchus spp.) provides a unique opportunity to explore intergenerational effects of oxidative stress. This study examined the effects of population origin on maternal and developing offspring oxidative stress and antioxidant capacity, and elucidated intergenerational relationships among populations of sockeye salmon (Oncorhynchus nerka) with varying migration effort. For three geographically distinct populations of Fraser River sockeye salmon (British Columbia, Canada), antioxidant capacity and oxidative stress were measured in adult female plasma, heart, brain, and liver, as well as in developing offspring until time of emergence. Maternal and offspring oxidative stress and antioxidant capacity varied among populations but patterns were not consistent across tissue/developmental stage. Furthermore, maternal oxidative stress and antioxidant capacity did not affect offspring oxidative stress and antioxidant capacity across any of the developmental stages or populations sampled. Our results revealed that offspring develop their endogenous antioxidant systems at varying rates across populations; however, this variability is overcome by the time of emergence. While offspring may be relying on maternally derived antioxidants in the initial stages of development, they rapidly develop their own antioxidant systems (mainly glutathione) during later stages of development.


Assuntos
Estresse Oxidativo , Salmão/metabolismo , Animais , Feminino
20.
Mol Ecol ; 23(23): 5803-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25354752

RESUMO

We present the first data to link physiological responses and pathogen presence with subsequent fate during migration of wild salmonid smolts. We tagged and non-lethally sampled gill tissue from sockeye salmon (Oncorhynchus nerka) smolts as they left their nursery lake (Chilko Lake, BC, Canada) to compare gene expression profiles and freshwater pathogen loads with migration success over the first ~1150 km of their migration to the North Pacific Ocean using acoustic telemetry. Fifteen per cent of smolts were never detected again after release, and these fish had gene expression profiles consistent with an immune response to one or more viral pathogens compared with fish that survived their freshwater migration. Among the significantly upregulated genes of the fish that were never detected postrelease were MX (interferon-induced GTP-binding protein Mx) and STAT1 (signal transducer and activator of transcription 1-alpha/beta), which are characteristic of a type I interferon response to viral pathogens. The most commonly detected pathogen in the smolts leaving the nursery lake was infectious haematopoietic necrosis virus (IHNV). Collectively, these data show that some of the fish assumed to have died after leaving the nursery lake appeared to be responding to one or more viral pathogens and had elevated stress levels that could have contributed to some of the mortality shortly after release. We present the first evidence that changes in gene expression may be predictive of some of the freshwater migration mortality in wild salmonid smolts.


Assuntos
Migração Animal , Proteínas de Peixes/genética , Salmão/genética , Salmão/virologia , Animais , Colúmbia Britânica , Conservação dos Recursos Naturais/métodos , Proteínas de Peixes/imunologia , Água Doce , Brânquias , Vírus da Necrose Hematopoética Infecciosa/isolamento & purificação , Oceano Pacífico , Rios , Salmão/imunologia , Telemetria , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA