Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Artif Intell ; 7: 1330257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962502

RESUMO

The world surrounding us is subject to constant change. These changes, frequently described as concept drift, influence many industrial and technical processes. As they can lead to malfunctions and other anomalous behavior, which may be safety-critical in many scenarios, detecting and analyzing concept drift is crucial. In this study, we provide a literature review focusing on concept drift in unsupervised data streams. While many surveys focus on supervised data streams, so far, there is no work reviewing the unsupervised setting. However, this setting is of particular relevance for monitoring and anomaly detection which are directly applicable to many tasks and challenges in engineering. This survey provides a taxonomy of existing work on unsupervised drift detection. In addition to providing a comprehensive literature review, it offers precise mathematical definitions of the considered problems and contains standardized experiments on parametric artificial datasets allowing for a direct comparison of different detection strategies. Thus, the suitability of different schemes can be analyzed systematically, and guidelines for their usage in real-world scenarios can be provided.

2.
Front Artif Intell ; 7: 1330258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100107

RESUMO

In an increasing number of industrial and technical processes, machine learning-based systems are being entrusted with supervision tasks. While they have been successfully utilized in many application areas, they frequently are not able to generalize to changes in the observed data, which environmental changes or degrading sensors might cause. These changes, commonly referred to as concept drift can trigger malfunctions in the used solutions which are safety-critical in many cases. Thus, detecting and analyzing concept drift is a crucial step when building reliable and robust machine learning-driven solutions. In this work, we consider the setting of unsupervised data streams which is highly relevant for different monitoring and anomaly detection scenarios. In particular, we focus on the tasks of localizing and explaining concept drift which are crucial to enable human operators to take appropriate action. Next to providing precise mathematical definitions of the problem of concept drift localization, we survey the body of literature on this topic. By performing standardized experiments on parametric artificial datasets we provide a direct comparison of different strategies. Thereby, we can systematically analyze the properties of different schemes and suggest first guidelines for practical applications. Finally, we explore the emerging topic of explaining concept drift.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA