Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Allergy ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686450

RESUMO

BACKGROUND: The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined. OBJECTIVES: To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS responsiveness. METHODS: Randomized open-label bronchoscopy study of high-dose ICS therapy in 30 healthy adult volunteers randomized 2:1 to (i) fluticasone propionate 500 mcg bd daily or (ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics. RESULTS: ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B-cell immunity (CD20, immunoglobulin heavy and light chains) and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS. CONCLUSIONS: In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.

2.
Allergy ; 77(10): 2974-2986, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35579040

RESUMO

BACKGROUND: The most recognizable phenotype of severe asthma comprises people who are blood eosinophil and FeNO-high, driven by type 2 (T2) cytokine biology, which responds to targeted biological therapies. However, in many people with severe asthma, these T2 biomarkers are suppressed but poorly controlled asthma persists. The mechanisms driving asthma in the absence of T2 biology are poorly understood. OBJECTIVES: To explore airway pathology in T2 biomarker-high and -low severe asthma. METHODS: T2 biomarker-high severe asthma (T2-high, n = 17) was compared with biomarker-intermediate (T2-intermediate, n = 21) and biomarker-low (T2-low, n = 20) severe asthma and healthy controls (n = 28). Bronchoscopy samples were processed for immunohistochemistry, and sputum for cytokines, PGD2 and LTE4 measurements. RESULTS: Tissue eosinophil, neutrophil and mast cell counts were similar across severe asthma phenotypes and not increased when compared to healthy controls. In contrast, the remodelling features of airway smooth muscle mass and MUC5AC expression were increased in all asthma groups compared with health, but similar across asthma subgroups. Submucosal glands were increased in T2-intermediate and T2-low asthma. In spite of similar tissue cellular inflammation, sputum IL-4, IL-5 and CCL26 were increased in T2-high versus T2-low asthma, and several further T2-associated cytokines, PGD2 and LTE4 , were increased in T2-high and T2-intermediate asthma compared with healthy controls. CONCLUSIONS: Eosinophilic tissue inflammation within proximal airways is suppressed in T2 biomarker-high and T2-low severe asthma, but inflammatory and structural cell activation is present, with sputum T2-associated cytokines highest in T2 biomarker-high patients. Airway remodelling persists and may be important for residual disease expression beyond eosinophilic exacerbations. Registered at ClincialTrials.gov: NCT02883530.


Assuntos
Asma , Eosinofilia , Remodelação das Vias Aéreas , Asma/metabolismo , Biomarcadores , Citocinas/análise , Eosinofilia/patologia , Eosinófilos/metabolismo , Humanos , Inflamação/patologia , Interleucina-4 , Interleucina-5/análise , Escarro
3.
Crit Rev Immunol ; 41(5): 19-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35381137

RESUMO

Mucosal associated invariant T (MAIT) cells were first identified as specific for bacterial, mycobacterial, and fungal organisms, which detect microbially-derived biosynthetic ligands presented by MHC-related protein 1 (MR1). More recently two unexpected, additional roles have been identified for these ancient and abundant cells: a TCR-depen-dent role in tissue repair and a TCR-independent role in antiviral host defence. Data from several classes of viral disease shows their capability for activation by the cytokines interleukin (IL)-12, IL-15, IL-18, and type I interferon. MAIT cells are abundant at mucosal surfaces, particularly in the lung, and it seems likely a primary reason for their striking evolutionary conservation is an important role in early innate defence against respiratory infections, including both bacteria and viruses. Here we review evidence for their TCR-independent activation, observational human data for their activation in influenza A virus, and in vivo murine evidence of their protection against severe influenza A infection, mediated at least partially via IFN-gamma. We then survey evidence emerging from other respiratory viral infections including recent evidence for an important adjuvant role in adenovirus infection, specifically chimpanzee adenoviruses used in recent coronavirus vaccines, and data for strong associations between MAIT cell responses and adverse outcomes from coronavirus-19 (COVID-19) disease. We speculate on potential translational implications of these findings, either using corticosteroids or inhibitory ligands to suppress deleterious MAIT cell responses, or the potential utility of stimulatory MR1 ligands to boost MAIT cell frequencies to enhance innate viral defences.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Viroses , Vírus , Animais , Humanos , Ativação Linfocitária , Camundongos
4.
Rev Med Virol ; 31(2): e2163, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32969125

RESUMO

Azithromycin (AZM) is a synthetic macrolide antibiotic effective against a broad range of bacterial and mycobacterial infections. Due to an additional range of anti-viral and anti-inflammatory properties, it has been given to patients with the coronaviruses SARS-CoV or MERS-CoV. It is now being investigated as a potential candidate treatment for SARS-CoV-2 having been identified as a candidate therapeutic for this virus by both in vitro and in silico drug screens. To date there are no randomised trial data on its use in any novel coronavirus infection, although a large number of trials are currently in progress. In this review, we summarise data from in vitro, murine and human clinical studies on the anti-viral and anti-inflammatory properties of macrolides, particularly AZM. AZM reduces in vitro replication of several classes of viruses including rhinovirus, influenza A, Zika virus, Ebola, enteroviruses and coronaviruses, via several mechanisms. AZM enhances expression of anti-viral pattern recognition receptors and induction of anti-viral type I and III interferon responses. Of relevance to severe coronavirus-19 disease (COVID-19), which is characterised by an over-exuberant innate inflammatory response, AZM also has anti-inflammatory properties including suppression of IL-1beta, IL-2, TNF and GM-CSF. AZM inhibits T cells by inhibiting calcineurin signalling, mammalian target of rapamycin activity and NFκB activation. AZM particularly targets granulocytes where it concentrates markedly in lysosomes, particularly affecting accumulation, adhesion, degranulation and apoptosis of neutrophils. Given its proven safety, affordability and global availability, tempered by significant concerns about antimicrobial stewardship, there is an urgent mandate to perform well-designed and conducted randomised clinical trials.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Viroses/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos
5.
Eur Respir J ; 57(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32586877

RESUMO

Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.


Assuntos
Antiasmáticos , Asma , Termoplastia Brônquica , Hipersensibilidade , Eosinofilia Pulmonar , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Humanos
6.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1244-L1247, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401670

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a new rapidly spreading infectious disease. Current guidance from the World Health Organization (WHO) highlights asthmatics as a high-risk group for severe illness from COVID-19. Viruses are common triggers of asthma exacerbations and the current SARS-CoV-2 pandemic raises several questions regarding the optimum management strategies. Here, we discuss the contentious issue of whether the mainstay therapy systemic corticosteroids should be used in the routine management of COVID-19-associated asthma exacerbations. Recent guidance from the WHO has advised against the use of corticosteroids if COVID-19 is suspected due to concerns that these agents may impair protective innate antiviral immune responses. This may not be appropriate in the unique case of asthma exacerbation, a syndrome associated with augmented type 2 inflammation, a disease feature that is known to directly inhibit antiviral immunity. Corticosteroids, through their suppressive effects on type 2 inflammation, are thus likely to restore impaired antiviral immunity in asthma and, in contrast to non-asthmatic subjects, have beneficial clinical effects in the context of SARS-CoV-2 infection.


Assuntos
Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Betacoronavirus , Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , Antivirais/uso terapêutico , Asma/virologia , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
7.
J Allergy Clin Immunol ; 143(2): 577-590, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29902480

RESUMO

BACKGROUND: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. OBJECTIVE: We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. METHODS: An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. RESULTS: Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1ß, IL-8, and IL-1ß. CONCLUSIONS: Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.


Assuntos
Asma/imunologia , Biomarcadores/metabolismo , Células Epiteliais/fisiologia , Inflamação/imunologia , Interleucina-6/metabolismo , Pulmão/fisiologia , Escarro/metabolismo , Adulto , Remodelação das Vias Aéreas , Células Cultivadas , Estudos de Coortes , Estudos Transversais , Regulação da Expressão Gênica , Humanos , Masculino , Fenótipo , Receptores de Interleucina-6/metabolismo , Hipersensibilidade Respiratória , Transdução de Sinais , Transcriptoma
8.
Am J Respir Cell Mol Biol ; 58(2): 261-270, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28933920

RESUMO

Asthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues. We sought to undertake a comprehensive transcriptomic assessment of the epithelium and airway T cells that remain understudied in asthma and investigate interactions between multiple cells and tissues. Epithelial brushings and flow-sorted CD3+ T cells from sputum and BAL were obtained from healthy subjects (n = 19) and patients with asthma (mild, moderate, and severe asthma; n = 46). Gene expression was assessed using Affymetrix HT HG-U133+ PM GeneChips, and results were validated by real-time quantitative PCR. In the epithelium, IL-13 response genes (POSTN, SERPINB2, and CLCA1), mast cell mediators (CPA3 and TPSAB1), inducible nitric oxide synthase, and cystatins (CST1, CST2, and CST4) were upregulated in mild asthma, but, except for cystatins, were suppressed by corticosteroids in moderate asthma. In severe asthma-with predominantly neutrophilic phenotype-several distinct processes were upregulated, including neutrophilia (TCN1 and MMP9), mucins, and oxidative stress responses. The majority of the disease signature was evident in sputum T cells in severe asthma, where 267 genes were differentially regulated compared with health, highlighting compartmentalization of inflammation. This signature included IL-17-inducible chemokines (CXCL1, CXCL2, CXCL3, IL8, and CSF3) and chemoattractants for neutrophils (IL8, CCL3, and LGALS3), T cells, and monocytes. A protein interaction network in severe asthma highlighted signatures of responses to bacterial infections across tissues (CEACAM5, CD14, and TLR2), including Toll-like receptor signaling. In conclusion, the activation of innate immune pathways in the airways suggests that activated T cells may be driving neutrophilic inflammation and steroid-insensitive IL-17 response in severe asthma.


Assuntos
Asma/genética , Asma/imunologia , Células Epiteliais/imunologia , Mucosa Respiratória/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Canais de Cloreto/metabolismo , Cistatinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Interleucina-13/imunologia , Interleucina-17/imunologia , Masculino , Pessoa de Meia-Idade , Receptores de Fator Estimulador de Colônias/metabolismo , Serpinas/metabolismo , Escarro/metabolismo , Adulto Jovem
9.
Anal Chem ; 90(22): 13400-13408, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30335973

RESUMO

Integration of multiomics data remains a key challenge in fulfilling the potential of comprehensive systems biology. Multiple-block orthogonal projections to latent structures (OnPLS) is a projection method that simultaneously models multiple data matrices, reducing feature space without relying on a priori biological knowledge. In order to improve the interpretability of OnPLS models, the associated multi-block variable influence on orthogonal projections (MB-VIOP) method is used to identify variables with the highest contribution to the model. This study combined OnPLS and MB-VIOP with interactive visualization methods to interrogate an exemplar multiomics study, using a subset of 22 individuals from an asthma cohort. Joint data structure in six data blocks was assessed: transcriptomics; metabolomics; targeted assays for sphingolipids, oxylipins, and fatty acids; and a clinical block including lung function, immune cell differentials, and cytokines. The model identified seven components, two of which had contributions from all blocks (globally joint structure) and five that had contributions from two to five blocks (locally joint structure). Components 1 and 2 were the most informative, identifying differences between healthy controls and asthmatics and a disease-sex interaction, respectively. The interactions between features selected by MB-VIOP were visualized using chord plots, yielding putative novel insights into asthma disease pathogenesis, the effects of asthma treatment, and biological roles of uncharacterized genes. For example, the gene ATP6 V1G1, which has been implicated in osteoporosis, correlated with metabolites that are dysregulated by inhaled corticoid steroids (ICS), providing insight into the mechanisms underlying bone density loss in asthma patients taking ICS. These results show the potential for OnPLS, combined with MB-VIOP variable selection and interaction visualization techniques, to generate hypotheses from multiomics studies and inform biology.


Assuntos
Asma/metabolismo , Análise de Dados , Biologia de Sistemas/métodos , Adulto , Asma/genética , Feminino , Genômica/métodos , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Análise Multivariada , Proteômica/métodos , Linfócitos T/metabolismo , Adulto Jovem
10.
Eur Respir J ; 49(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28356371

RESUMO

In this study, we sought to determine whether asthma has a metabolic profile and whether this profile is related to disease severity.We characterised the serum from 22 healthy individuals and 54 asthmatics (12 mild, 20 moderate, 22 severe) using liquid chromatography-high-resolution mass spectrometry-based metabolomics. Selected metabolites were confirmed by targeted mass spectrometry assays of eicosanoids, sphingolipids and free fatty acids.We conclusively identified 66 metabolites; 15 were significantly altered with asthma (p≤0.05). Levels of dehydroepiandrosterone sulfate, cortisone, cortisol, prolylhydroxyproline, pipecolate and N-palmitoyltaurine correlated significantly (p<0.05) with inhaled corticosteroid dose, and were further shifted in individuals treated with oral corticosteroids. Oleoylethanolamide increased with asthma severity independently of steroid treatment (p<0.001). Multivariate analysis revealed two patterns: 1) a mean difference between controls and patients with mild asthma (p=0.025), and 2) a mean difference between patients with severe asthma and all other groups (p=1.7×10-4). Metabolic shifts in mild asthma, relative to controls, were associated with exogenous metabolites (e.g. dietary lipids), while those in moderate and severe asthma (e.g. oleoylethanolamide, sphingosine-1-phosphate, N-palmitoyltaurine) were postulated to be involved in activating the transient receptor potential vanilloid type 1 (TRPV1) receptor, driving TRPV1-dependent pathogenesis in asthma.Our findings suggest that asthma is characterised by a modest systemic metabolic shift in a disease severity-dependent manner, and that steroid treatment significantly affects metabolism.


Assuntos
Corticosteroides/administração & dosagem , Asma/tratamento farmacológico , Asma/metabolismo , Metaboloma , Administração por Inalação , Administração Oral , Adulto , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Espectrometria de Massas , Metabolômica , Pessoa de Meia-Idade , Análise Multivariada , Índice de Gravidade de Doença , Adulto Jovem
11.
J Immunol ; 194(12): 6144-54, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25934861

RESUMO

Influenza A virus causes considerable morbidity and mortality largely because of a lack of effective antiviral drugs. Viral neuraminidase inhibitors, which inhibit viral release from the infected cell, are currently the only approved drugs for influenza, but have recently been shown to be less effective than previously thought. Growing resistance to therapies that target viral proteins has led to increased urgency in the search for novel anti-influenza compounds. However, discovery and development of new drugs have been restricted because of differences in susceptibility to influenza between animal models and humans and a lack of translation between cell culture and in vivo measures of efficacy. To circumvent these limitations, we developed an experimental approach based on ex vivo infection of human bronchial tissue explants and optimized a method of flow cytometric analysis to directly quantify infection rates in bronchial epithelial tissues. This allowed testing of the effectiveness of TVB024, a vATPase inhibitor that inhibits viral replication rather than virus release, and to compare efficacy with the current frontline neuraminidase inhibitor, oseltamivir. The study showed that the vATPase inhibitor completely abrogated epithelial cell infection, virus shedding, and the associated induction of proinflammatory mediators, whereas oseltamivir was only partially effective at reducing these mediators and ineffective against innate responses. We propose, therefore, that this explant model could be used to predict the efficacy of novel anti-influenza compounds targeting diverse stages of the viral replication cycle, thereby complementing animal models and facilitating progression of new drugs into clinical trials.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/virologia , Pulmão/efeitos dos fármacos , Pulmão/virologia , Técnicas de Cultura de Órgãos , Antivirais/administração & dosagem , Antivirais/farmacologia , Citometria de Fluxo , Humanos , Imunofenotipagem , Vírus da Influenza A/fisiologia , Influenza Humana/tratamento farmacológico , Fenótipo
13.
Respirology ; 22(4): 662-670, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28370783

RESUMO

Coal workers' pneumoconiosis (CWP), as part of the spectrum of coal mine dust lung disease (CMDLD), is a preventable but incurable lung disease that can be complicated by respiratory failure and death. Recent increases in coal production from the financial incentive of economic growth lead to higher respirable coal and quartz dust levels, often associated with mechanization of longwall coal mining. In Australia, the observed increase in the number of new CWP diagnoses since the year 2000 has necessitated a review of recommended respirable dust exposure limits, where exposure limits and monitoring protocols should ideally be standardized. Evidence that considers the regulation of engineering dust controls in the mines is lacking even in high-income countries, despite this being the primary preventative measure. Also, it is a global public health priority for at-risk miners to be systemically screened to detect early changes of CWP and to include confirmed patients within a central registry; a task limited by financial constraints in less developed countries. Characteristic X-ray changes are usually categorized using the International Labour Office classification, although future evaluation by low-dose HRCT) chest scanning may allow for CWP detection and thus avoidance of further exposure, at an earlier stage. Preclinical animal and human organoid-based models are required to explore potential re-purposing of anti-fibrotic and related agents with potential efficacy. Epidemiological patterns and the assessment of molecular and genetic biomarkers may further enhance our capacity to identify susceptible individuals to the inhalation of coal dust in the modern era.


Assuntos
Antracose/epidemiologia , Minas de Carvão , Poeira , Exposição Ocupacional/efeitos adversos , Antracose/etiologia , Saúde Global , Humanos , Morbidade
14.
Am J Respir Crit Care Med ; 194(10): 1208-1218, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27115408

RESUMO

RATIONALE: Mucosal-associated invariant T (MAIT) cells are a recently described abundant, proinflammatory T-cell subset with unknown roles in pulmonary immunity. Nontypeable Haemophilus influenzae (NTHi) is the leading bacterial pathogen during chronic obstructive pulmonary disease (COPD) exacerbations and is a plausible target for MAIT cells. OBJECTIVES: To investigate whether MAIT cells respond to NTHi and the effects of inhaled corticosteroids (ICS) on their frequency and function in COPD. METHODS: Eleven subjects with COPD receiving ICS, 8 steroid-naive subjects with COPD, and 21 healthy control subjects underwent phlebotomy, sputum induction, bronchoalveolar lavage, and endobronchial biopsy. Pulmonary and monocyte-derived macrophages were cultured in vitro with NTHi. MEASUREMENTS AND MAIN RESULTS: Frequencies of Vα7.2+CD161+ MAIT cells, surface expression of the major histocompatibility complex-related protein 1 (MR1), and intracellular IFN-γ expression were measured by flow cytometry. MAIT-cell frequencies were reduced in peripheral blood of ICS-treated subjects with COPD (median 0.38%; interquartile range [IQR], 0.25-0.96) compared with healthy control subjects (1.8%; IQR, 1.4-2.5; P = 0.001) or steroid-naive patients with COPD (1.8%; IQR, 1.2-2.3; P = 0.04). MAIT cells were reduced in bronchial biopsies from subjects with COPD treated with steroids (0.73%; IQR, 0.46-1.3) compared with healthy control subjects (4.0%; IQR, 1.6-5.0; P = 0.02). Coculture of live NTHi increased macrophage surface expression of MR1 and induced IFN-γ from CD4 cells and CD8 cells, but most potently from MAIT cells (median IFN-γ-positive frequencies, 2.9, 8.6, and 27.6%, respectively). In vitro fluticasone and budesonide reduced MR1 surface expression twofold and decreased NTHi-induced IFN-γ secretion eightfold. CONCLUSIONS: MAIT cells are deficient in blood and bronchial tissue in steroid-treated, but not steroid-naive, COPD. NTHi constitutes a target for pulmonary MAIT-cell immune responses, which are significantly impaired by corticosteroids.


Assuntos
Corticosteroides/farmacologia , Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Células T Invariantes Associadas à Mucosa/efeitos dos fármacos , Células T Invariantes Associadas à Mucosa/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Adulto , Idoso , Feminino , Citometria de Fluxo , Infecções por Haemophilus/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/complicações , Adulto Jovem
16.
J Allergy Clin Immunol ; 138(1): 61-75, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26851968

RESUMO

BACKGROUND: Disease heterogeneity in patients with severe asthma and its relationship to inflammatory mechanisms remain poorly understood. OBJECTIVE: We aimed to identify and replicate clinicopathologic endotypes based on analysis of blood and sputum parameters in asthmatic patients. METHODS: One hundred ninety-four asthmatic patients and 21 control subjects recruited from 2 separate centers underwent detailed clinical assessment, sputum induction, and phlebotomy. One hundred three clinical, physiologic, and inflammatory parameters were analyzed by using topological data analysis and Bayesian network analysis. RESULTS: Severe asthma was associated with anxiety and depression, obesity, sinonasal symptoms, decreased quality of life, and inflammatory changes, including increased sputum chitinase 3-like protein 1 (YKL-40) and matrix metalloproteinase (MMP) 1, 3, 8, and 12 levels. Topological data analysis identified 6 clinicopathobiologic clusters replicated in both geographic cohorts: young, mild paucigranulocytic; older, sinonasal disease; obese, high MMP levels; steroid resistant TH2 mediated, eosinophilic; mixed granulocytic with severe obstruction; and neutrophilic, low periostin levels, severe obstruction. Sputum IL-5 levels were increased in patients with severe particularly eosinophilic forms, whereas IL-13 was suppressed and IL-17 levels did not differ between clusters. Bayesian network analysis separated clinical features from intricately connected inflammatory pathways. YKL-40 levels strongly correlated with neutrophilic asthma and levels of myeloperoxidase, IL-8, IL-6, and IL-6 soluble receptor. MMP1, MMP3, MMP8, and MMP12 levels were associated with severe asthma and were correlated positively with sputum IL-5 levels but negatively with IL-13 levels. CONCLUSION: In 2 distinct cohorts we have identified and replicated 6 clinicopathobiologic clusters based on blood and induced sputum measures. Our data underline a disconnect between clinical features and underlying inflammation, suggest IL-5 production is relatively steroid insensitive, and highlight the expression of YKL-40 in patients with neutrophilic inflammation and the expression of MMPs in patients with severe asthma.


Assuntos
Asma/diagnóstico , Asma/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Metaloproteinases da Matriz/metabolismo , Adulto , Idoso , Asma/tratamento farmacológico , Teorema de Bayes , Biomarcadores , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Inibidores de Metaloproteinases de Matriz/metabolismo , Pessoa de Meia-Idade , Testes de Função Respiratória , Fatores de Risco , Índice de Gravidade de Doença , Escarro/metabolismo , Adulto Jovem
17.
Immunology ; 148(1): 1-12, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26778581

RESUMO

Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers.


Assuntos
Doenças Autoimunes/imunologia , Imunidade nas Mucosas/imunologia , Doenças Respiratórias/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Artrite Reumatoide/imunologia , Diabetes Mellitus Tipo 2/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Esclerose Múltipla/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA