Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 595(7869): 718-723, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34082438

RESUMO

Resistance represents a major challenge for antibody-based therapy for COVID-191-4. Here we engineered an immunoglobulin M (IgM) neutralizing antibody (IgM-14) to overcome the resistance encountered by immunoglobulin G (IgG)-based therapeutics. IgM-14 is over 230-fold more potent than its parental IgG-14 in neutralizing SARS-CoV-2. IgM-14 potently neutralizes the resistant virus raised by its corresponding IgG-14, three variants of concern-B.1.1.7 (Alpha, which first emerged in the UK), P.1 (Gamma, which first emerged in Brazil) and B.1.351 (Beta, which first emerged in South Africa)-and 21 other receptor-binding domain mutants, many of which are resistant to the IgG antibodies that have been authorized for emergency use. Although engineering IgG into IgM enhances antibody potency in general, selection of an optimal epitope is critical for identifying the most effective IgM that can overcome resistance. In mice, a single intranasal dose of IgM-14 at 0.044 mg per kg body weight confers prophylactic efficacy and a single dose at 0.4 mg per kg confers therapeutic efficacy against SARS-CoV-2. IgM-14, but not IgG-14, also confers potent therapeutic protection against the P.1 and B.1.351 variants. IgM-14 exhibits desirable pharmacokinetics and safety profiles when administered intranasally in rodents. Our results show that intranasal administration of an engineered IgM can improve efficacy, reduce resistance and simplify the prophylactic and therapeutic treatment of COVID-19.


Assuntos
COVID-19/prevenção & controle , COVID-19/virologia , Imunoglobulina M/administração & dosagem , Imunoglobulina M/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Administração Intranasal , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , COVID-19/imunologia , Relação Dose-Resposta Imunológica , Feminino , Humanos , Imunoglobulina A/genética , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/efeitos adversos , Imunoglobulina M/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Engenharia de Proteínas , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , SARS-CoV-2/genética , Tratamento Farmacológico da COVID-19
2.
Emerg Microbes Infect ; 12(2): 2275598, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38078382

RESUMO

The capacity of SARS-CoV-2 to evolve poses challenges to conventional prevention and treatment options such as vaccination and monoclonal antibodies, as they rely on viral receptor binding domain (RBD) sequences from previous strains. Additionally, animal CoVs, especially those of the SARS family, are now appreciated as a constant pandemic threat. We present here a new antiviral approach featuring inhalation delivery of a recombinant viral trap composed of ten copies of angiotensin-converting enzyme 2 (ACE2) fused to the IgM Fc. This ACE2 decamer viral trap is designed to inhibit SARS-CoV-2 entry function, regardless of viral RBD sequence variations as shown by its high neutralization potency against all known SARS-CoV-2 variants, including Omicron BQ.1, BQ.1.1, XBB.1 and XBB.1.5. In addition, it demonstrates potency against SARS-CoV-1, human NL63, as well as bat and pangolin CoVs. The multivalent trap is effective in both prophylactic and therapeutic settings since a single intranasal dosing confers protection in human ACE2 transgenic mice against viral challenges. Lastly, this molecule is stable at ambient temperature for more than twelve weeks and can sustain physical stress from aerosolization. These results demonstrate the potential of a decameric ACE2 viral trap as an inhalation solution for ACE2-dependent coronaviruses of current and future pandemic concerns.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/metabolismo , Glicoproteína da Espícula de Coronavírus
3.
Protein Eng Des Sel ; 32(12): 543-554, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32725169

RESUMO

Humanized and fully human sequence-derived therapeutic antibodies retain the capacity to induce anti-drug antibodies. Daclizumab (humanized version of the murine anti-Tac antibody; E.HAT) was selected for a proof of concept application of engineering approaches to reduce potential immunogenicity due to its demonstrated immunogenicity in the clinic. Reduced immunogenicity variants of E.HAT were created by identifying and modifying a CD4+ T cell epitope region in the VH region. Variant epitope region peptides were selected for their reduced capacity to induce CD4+ T cell proliferative responses in vitro. Variant antibody molecules were created, and CD25 affinity and potency were similar to the unmodified parent antibody. Fab fragments from the variant antibodies induced a lower frequency and magnitude of responses in human peripheral blood mononuclear cells proliferation tests. By the empirical selection of two amino acid mutations, fully functional humanized E.HAT antibodies with reduced potential to induce immune responses in vitro were created.


Assuntos
Daclizumabe/genética , Daclizumabe/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Engenharia de Proteínas , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Daclizumabe/química , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia
4.
MAbs ; 8(7): 1417-1424, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27367933

RESUMO

The CD25-binding antibody daclizumab high-yield process (DAC HYP) is an interleukin (IL)-2 signal modulating antibody that shares primary amino acid sequence and CD25 binding affinity with Zenapax®, a distinct form of daclizumab, which was approved for the prevention of acute organ rejection in patients receiving renal transplants as part of an immunosuppressive regimen that includes cyclosporine and corticosteroids. Comparison of the physicochemical properties of the two antibody forms revealed the glycosylation profile of DAC HYP differs from Zenapax in both glycan distribution and the types of oligosaccharides, most notably high-mannose, galactosylated and galactose-α-1,3-galactose (α-Gal) oligosaccharides, resulting in a DAC HYP antibody material that is structurally distinct from Zenapax. Although neither antibody elicited complement-dependent cytotoxicity in vitro, DAC HYP antibody had significantly reduced levels of antibody-dependent cell-mediated cytotoxicity (ADCC). The ADCC activity required natural killer (NK) cells, but not monocytes, suggesting the effects were mediated through binding to Fc-gamma RIII (CD16). Incubation of each antibody with peripheral blood mononuclear cells also caused the down-modulation of CD16 expression on NK cells and the CD16 down-modulation was greater for Zenapax in comparison to that observed for DAC HYP. The substantive glycosylation differences between the two antibody forms and corresponding greater Fc-mediated effector activities by Zenapax, including cell killing activity, manifest as a difference in the biological function and pharmacology between DAC HYP and Zenapax.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Imunoglobulina G/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Daclizumabe , Glicosilação , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Leucócitos Mononucleares/imunologia
5.
J Immunol ; 176(1): 346-56, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16365427

RESUMO

The serum half-life of IgG Abs is regulated by the neonatal Fc receptor (FcRn). By binding to FcRn in endosomes, IgG Abs are salvaged from lysosomal degradation and recycled to the circulation. Several studies have demonstrated a correlation between the binding affinity of IgG Abs to FcRn and their serum half-lives in mice, including engineered Ab fragments with longer serum half-lives. Our recent study extended this correlation to human IgG2 Ab variants in primates. In the current study, several human IgG1 mutants with increased binding affinity to human FcRn at pH 6.0 were generated that retained pH-dependent release. A pharmacokinetics study in rhesus monkeys of one of the IgG1 variants indicated that its serum half-life was approximately 2.5-fold longer than the wild-type Ab. Ag binding was unaffected by the Fc mutations, while several effector functions appeared to be minimally altered. These properties suggest that engineered Abs with longer serum half-lives may prove to be effective therapeutics in humans.


Assuntos
Imunoglobulina G/sangue , Modelos Moleculares , Engenharia de Proteínas , Animais , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos , Citotoxicidade Imunológica , Meia-Vida , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoglobulina G/química , Macaca mulatta , Receptores Fc/imunologia
6.
Methods ; 36(1): 69-83, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15848076

RESUMO

Since the introduction of hybridoma technology, monoclonal antibodies have become one of the most important tools in the biosciences, finding diverse applications including their use in the therapy of human disease. Initial attempts to use monoclonal antibodies as therapeutics were hampered, however, by the potent immunogenicity of mouse (and other rodent) antibodies in humans. Humanization technology has made it possible to remove the immunogenicity associated with the use of rodent antibodies, or at least to reduce it to an acceptable level for clinical use in humans, thus facilitating the application of monoclonal antibodies to the treatment of human disease. To date, nine humanized monoclonal antibodies have been approved for use as human therapeutics in the United States. In this paper, we describe procedures for antibody humanization with an emphasis on strategies for designing humanized antibodies with the aid of computer-guided modeling of antibody variable domains, using as an example the humanized anti-CD25 monoclonal antibody, Zenapax.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais Humanizados , Sequência de Bases , Daclizumabe , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Região Variável de Imunoglobulina/genética , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
7.
J Biol Chem ; 279(8): 6213-6, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14699147

RESUMO

The neonatal Fc receptor (FcRn) plays an important role in regulating the serum half-lives of IgG antibodies. A correlation has been established between the pH-dependent binding affinity of IgG antibodies to FcRn and their serum half-lives in mice. In this study, molecular modeling was used to identify Fc positions near the FcRn binding site in a human IgG antibody that, when mutated, might alter the binding affinity of IgG to FcRn. Following mutagenesis, several IgG2 mutants with increased binding affinity to human FcRn at pH 6.0 were identified at Fc positions 250 and 428. These mutants do not bind to human FcRn at pH 7.5. A pharmacokinetics study of two mutant IgG2 antibodies with increased FcRn binding affinity indicated that they had serum half-lives in rhesus monkeys approximately 2-fold longer than the wild-type antibody.


Assuntos
Imunoglobulina G/sangue , Imunoglobulina G/química , Animais , Anticorpos/química , Sítios de Ligação , Sítios de Ligação de Anticorpos , Ligação Competitiva , Linhagem Celular , Clonagem Molecular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Meia-Vida , Antígenos de Histocompatibilidade Classe I , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Concentração Inibidora 50 , Rim/citologia , Macaca mulatta , Modelos Moleculares , Mutagênese , Mutação , Ligação Proteica , Receptores Fc/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA