Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34553747

RESUMO

MOTIVATION: The Estimation of Model Accuracy problem is a cornerstone problem in the field of Bioinformatics. As of CASP14, there are 79 global QA methods, and a minority of 39 residue-level QA methods with very few of them working on protein complexes. Here, we introduce ZoomQA, a novel, single-model method for assessing the accuracy of a tertiary protein structure/complex prediction at residue level, which have many applications such as drug discovery. ZoomQA differs from others by considering the change in chemical and physical features of a fragment structure (a portion of a protein within a radius $r$ of the target amino acid) as the radius of contact increases. Fourteen physical and chemical properties of amino acids are used to build a comprehensive representation of every residue within a protein and grade their placement within the protein as a whole. Moreover, we have shown the potential of ZoomQA to identify problematic regions of the SARS-CoV-2 protein complex. RESULTS: We benchmark ZoomQA on CASP14, and it outperforms other state-of-the-art local QA methods and rivals state of the art QA methods in global prediction metrics. Our experiment shows the efficacy of these new features and shows that our method is able to match the performance of other state-of-the-art methods without the use of homology searching against databases or PSSM matrices. AVAILABILITY: http://zoomQA.renzhitech.com.


Assuntos
COVID-19 , Caspases/química , Aprendizado de Máquina , Modelos Moleculares , SARS-CoV-2/química , Proteínas Virais/química , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de Proteína
2.
Curr Med Chem ; 29(5): 807-821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34636289

RESUMO

Malaria caused by Plasmodium falciparum is one of the major infectious diseases in the world. It is essential to exploit an effective method to predict secretory proteins of malaria parasites to develop effective cures and treatment. Biochemical assays can provide details for accurate identification of the secretory proteins, but these methods are expensive and time-consuming. In this paper, we summarized the machine learningbased identification algorithms and compared the construction strategies between different computational methods. Also, we discussed the use of machine learning to improve the ability of algorithms to identify proteins secreted by malaria parasites.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Aprendizado de Máquina , Malária/diagnóstico , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Parasitos/metabolismo , Plasmodium falciparum/química , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
3.
Curr Gene Ther ; 22(2): 132-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34161210

RESUMO

With new developments in biomedical technology, it is now a viable therapeutic treatment to alter genes with techniques like CRISPR. At the same time, it is increasingly cheaper to perform whole genome sequencing, resulting in rapid advancement in gene therapy and editing in precision medicine. Understanding the current industry and academic applications of gene therapy provides an important backdrop to future scientific developments. Additionally, machine learning and artificial intelligence techniques allow for the reduction of time and money spent in the development of new gene therapy products and techniques. In this paper, we survey the current progress of gene therapy treatments for several diseases and explore machine learning applications in gene therapy. We also discuss the ethical implications of gene therapy and the use of machine learning in precision medicine. Machine learning and gene therapy are both topics gaining popularity in various publications, and we conclude that there is still room for continued research and application of machine learning techniques in the gene therapy field.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Terapia Genética , Medicina de Precisão
4.
bioRxiv ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36451881

RESUMO

We seek to transform how new and emergent variants of pandemic-causing viruses, specifically SARS-CoV-2, are identified and classified. By adapting large language models (LLMs) for genomic data, we build genome-scale language models (GenSLMs) which can learn the evolutionary landscape of SARS-CoV-2 genomes. By pre-training on over 110 million prokaryotic gene sequences and fine-tuning a SARS-CoV-2-specific model on 1.5 million genomes, we show that GenSLMs can accurately and rapidly identify variants of concern. Thus, to our knowledge, GenSLMs represents one of the first whole genome scale foundation models which can generalize to other prediction tasks. We demonstrate scaling of GenSLMs on GPU-based supercomputers and AI-hardware accelerators utilizing 1.63 Zettaflops in training runs with a sustained performance of 121 PFLOPS in mixed precision and peak of 850 PFLOPS. We present initial scientific insights from examining GenSLMs in tracking evolutionary dynamics of SARS-CoV-2, paving the path to realizing this on large biological data.

5.
Math Biosci Eng ; 18(4): 3348-3363, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34198389

RESUMO

N4-methylcytosine (4mC) is a kind of DNA modification which could regulate multiple biological processes. Correctly identifying 4mC sites in genomic sequences can provide precise knowledge about their genetic roles. This study aimed to develop an ensemble model to predict 4mC sites in the mouse genome. In the proposed model, DNA sequences were encoded by k-mer, enhanced nucleic acid composition and composition of k-spaced nucleic acid pairs. Subsequently, these features were optimized by using minimum redundancy maximum relevance (mRMR) with incremental feature selection (IFS) and five-fold cross-validation. The obtained optimal features were inputted into random forest classifier for discriminating 4mC from non-4mC sites in mouse. On the independent dataset, our model could yield the overall accuracy of 85.41%, which was approximately 3.8% -6.3% higher than the two existing models, i4mC-Mouse and 4mCpred-EL respectively. The data and source code of the model can be freely download from https://github.com/linDing-groups/model_4mc.


Assuntos
Citosina , DNA , Animais , Biologia Computacional , Genoma , Aprendizado de Máquina , Camundongos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA