Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Metab Eng ; 64: 167-179, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33549838

RESUMO

Pseudomonas putida KT2440 (hereafter KT2440) is a well-studied platform bacterium for the production of industrially valuable chemicals from heterogeneous mixtures of aromatic compounds obtained from lignin depolymerization. KT2440 can grow on lignin-related monomers, such as ferulate (FA), 4-coumarate (4CA), vanillate (VA), 4-hydroxybenzoate (4HBA), and protocatechuate (PCA). Genes associated with their catabolism are known, but knowledge about the uptake systems remains limited. In this work, we studied the KT2440 transporters of lignin-related monomers and their substrate selectivity. Based on the inhibition by protonophores, we focused on five genes encoding aromatic acid/H+ symporter family transporters categorized into major facilitator superfamily that uses the proton motive force. The mutants of PP_1376 (pcaK) and PP_3349 (hcnK) exhibited significantly reduced growth on PCA/4HBA and FA/4CA, respectively, while no change was observed on VA for any of the five gene mutants. At pH 9.0, the conversion of these compounds by hcnK mutant (FA/4CA) and vanK mutant (VA) was dramatically reduced, revealing that these transporters are crucial for the uptake of the anionic substrates at high pH. Uptake assays using 14C-labeled substrates in Escherichia coli and biosensor-based assays confirmed that PcaK, HcnK, and VanK have ability to take up PCA, FA/4CA, and VA/PCA, respectively. Additionally, analyses of the predicted protein structures suggest that the size and hydropathic properties of the substrate-binding sites of these transporters determine their substrate preferences. Overall, this study reveals that at physiological pH, PcaK and HcnK have a major role in the uptake of PCA/4HBA and FA/4CA, respectively, and VanK is a VA/PCA transporter. This information can contribute to the engineering of strains for the efficient conversion of lignin-related monomers to value-added chemicals.


Assuntos
Pseudomonas putida , Simportadores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Prótons , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
2.
Sci Rep ; 13(1): 11258, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438469

RESUMO

Rapid determination of drug efficacy against bacterial pathogens is needed to detect potentially resistant bacteria and allow for more rational use of antimicrobials. As an indicator of the antimicrobial effect for rapid detection, we found changes in image brightness in antimicrobial-affected bacteria by scanning electron microscopy (SEM). The cell envelopes of unaffected bacteria were stained with phosphotungstic acid (PTA), whereas the entire cells of affected bacteria were stained. Since tungsten density increases backscattered electron intensity, brighter bacterial images indicate lethal damage. We propose a simplified method for determining antimicrobial efficacy by detecting damage that occurs immediately after drug administration using tabletop SEM. This method enabled the visualization of microscopic deformations while distinguishing bacterial-cell-envelope damage on gram-negative bacteria due to image-brightness change. Escherichia coli, Acinetobacter baumannii, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa were exposed to imipenem and colistin, which affect the cell envelope through different mechanisms. Classification of single-cell images based on brightness was quantified for approximately 500 bacteria per sample, and the bright images predominated within 5 to 60 min of antimicrobial treatment, depending on the species. Using intracellular PTA staining and characteristic deformations as indicators, it was possible to determine the efficacy of antimicrobials in causing bacterial-cell-envelope damage.


Assuntos
Anti-Infecciosos , Parede Celular , Microscopia Eletrônica de Varredura , Membrana Celular , Bactérias Gram-Negativas , Escherichia coli
3.
Commun Chem ; 6(1): 231, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884638

RESUMO

Accessible drug modalities have continued to increase in number in recent years. Peptides play a central role as pharmaceuticals and biomaterials in these new drug modalities. Although traditional peptide synthesis using chain-elongation from C- to N-terminus is reliable, it produces large quantities of chemical waste derived from protecting groups and condensation reagents, which place a heavy burden on the environment. Here we report an alternative N-to-C elongation strategy utilizing catalytic peptide thioacid formation and oxidative peptide bond formation with main chain-unprotected amino acids under aerobic conditions. This method is applicable to both iterative peptide couplings and convergent fragment couplings without requiring elaborate condensation reagents and protecting group manipulations. A recyclable N-hydroxy pyridone additive effectively suppresses epimerization at the elongating chain. We demonstrate the practicality of this method by showcasing a straightforward synthesis of the nonapeptide DSIP. This method further opens the door to clean and atom-efficient peptide synthesis.

4.
Int J Comput Assist Radiol Surg ; 17(11): 2041-2049, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35930131

RESUMO

PURPOSE: Detection of early-stage liver fibrosis has direct clinical implications on patient management and treatment. The aim of this paper is to develop a non-invasive, cost-effective method for classifying liver disease between "non-fibrosis" (F0) and "fibrosis" (F1-F4), and to evaluate the classification performance quantitatively. METHODS: Image data from 75 patients who underwent a simultaneous liver biopsy and non-contrast CT examination were used for this study. Non-contrast CT image texture features such as wavelet-based features, standard deviation of variance filter, and mean CT number were calculated in volumes of interest (VOIs) positioned within the liver parenchyma. In addition, a combined feature was calculated using logistic regression with L2-norm regularization to further improve fibrosis detection. Based on the final pathology from the liver biopsy, the patients were labelled either as "non-fibrosis" or "fibrosis". Receiver-operating characteristic (ROC) curve, area under the ROC curve (AUROC), specificity, sensitivity, and accuracy were determined for the algorithm to differentiate between "non-fibrosis" and "fibrosis". RESULTS: The combined feature showed the highest classification performance with an AUROC of 0.86, compared to the wavelet-based feature (AUROC, 0.76), the standard deviation of variance filter (AUROC, 0.65), and mean CT number (AUROC, 0.84). The combined feature's specificity, sensitivity, and accuracy were 0.66, 0.88, and 0.76, respectively, showing the most promising results. CONCLUSION: A new non-invasive and cost-effective method was developed to classify liver diseases between "non-fibrosis" (F0) and "fibrosis" (F1-F4). The proposed method makes it possible to detect liver fibrosis in asymptomatic patients using non-contrast CT images for better patient management and treatment.


Assuntos
Cirrose Hepática , Fígado , Algoritmos , Biópsia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Curva ROC , Tomografia Computadorizada por Raios X/métodos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4828-4831, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946942

RESUMO

Biomechanics of the cell indicates the inner structure and viability of the cell. Mechanical properties are represented by acoustic properties such as speed of sound (SOS) or acoustic impedance. In the present study, cellular resolution scanning acoustic microscope combined with optical microscope (OptSAM) is developed to observe the change of mechanical properties in cell differentiation. Main part of the OptSAM was consisted of 350 MHz ultrasound transducer mechanically scanned by a piezo-actuator. Thickness, SOS, acoustic impedance, density and elastic bulk modulus of the cell were deduced by the ultrasound responses in both time domain and frequency domain. C2C12 cell changing its form from myoblast to myotube was observed by OptSAM. The value of bulk modulus slightly increased in response to differentiation process. OptSAM non-invasively provides important information on biomechanics of cells without contact or staining.


Assuntos
Microscopia Acústica , Som , Acústica , Animais , Fenômenos Fisiológicos Celulares , Módulo de Elasticidade , Camundongos , Mioblastos
6.
Chem Commun (Camb) ; 54(86): 12222-12225, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30310900

RESUMO

A catalytic one-step synthesis of peptide thioacids was developed. The oxygen-sulfur atom exchange reaction converted the carboxy group at the C-terminus of the peptides into a thiocarboxy group with suppressed epimerization. This method was successfully applied to the synthesis of the peptide drug leuprorelin via an iterative fragment-coupling protocol.


Assuntos
Leuprolida/síntese química , Peptídeos/química , Compostos de Sulfidrila/química , Catálise , Leuprolida/química , Ácidos Sulfênicos/química
7.
Nanoscale ; 4(24): 7791-6, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23138415

RESUMO

We demonstrate a solid phase reaction approach to synthesise transfer-free graphene on an insulating substrate by controlling the C diffusion process. Metal assisted crystallization by annealing of a C thin film was carried out to synthesise transfer-free graphene, in the presence of a top metal oxide and metal layer. Without the metal oxide layer, a large amount of C atoms diffused to the top of the metal surface and hence the formation of only small graphene domains was observed on the underneath of the metal layer. Introducing the metal oxide layer at the top surface, C diffusion was reduced and consequently the thin C film was crystallized to form large area graphene at the metal-insulating substrate interface. The metal oxide or metal catalyst layer was removed after graphene formation and transfer-free graphene was obtained directly on the base substrate. This finding shows that the thin metal oxide layer is critical to synthesise graphene with better quality and continuous domain structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA