Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(18): 7674-7681, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121354

RESUMO

Lead halide perovskite nanocrystals (NCs) have outstanding photoluminescence (PL) properties and excellent potential for light-emitting diodes and single-photon sources. Here, we report the multiple-peak structures originating from excitons, trions, and biexcitons in low-temperature PL spectra of single CsPbBr3 NCs. We found fine-structure splitting in the PL peaks of bright excitons and biexcitons and also in the longitudinal-optical (LO)-phonon replicas of excitons. LO-phonon replicas of trions are clearly observed under strong photoexcitation, which do not show fine-structure splitting. From size-dependent analyses of these replicas, we clarified that both exciton-phonon and trion-phonon couplings become larger for smaller NCs and the coupling strengths of trions are larger than those of excitons in large NCs. These behaviors can be explained by the spatial distributions of the electron and hole wave functions in the NCs. Our findings provide essential information on electron-phonon couplings in perovskites and for the design of high-purity single-photon sources.

2.
Opt Lett ; 46(20): 5280-5283, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653172

RESUMO

We demonstrate a compact and tunable mid-infrared light source that provides carrier-envelope-phase (CEP)-locked pulses at repetition rates from 500 Hz to 10 kHz. The seed pulses were generated by intra-pulse difference frequency mixing of the output of an Yb:KGW regenerative amplifier that had been spectrally broadened by continuum generation using multiple plates. Then, a two-stage optical parametric amplifier was used to obtain output energies of about 100 µJ/pulse for center wavelengths between 2.8 and 3.5 µm. Owing to the intense pulse energies, it was possible to compress the multi-cycle pulses down to two-cycle pulses using YAG and Si plates.

3.
Phys Rev Lett ; 126(7): 077401, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666485

RESUMO

We investigate the impact of phonon excitations on the photoexcited carrier dynamics in a lead-halide perovskite CH_{3}NH_{3}PbI_{3}, which hosts unique low-energy phonons that can be directly excited by terahertz pulses. Our time-resolved photoluminescence measurements reveal that strong terahertz excitation prolongs the cooling time of hot carriers, providing direct evidence for the hot-phonon bottleneck effect. In contrast to the previous studies where phonons are treated as a passive heat bath, our results demonstrate that phonon excitation can significantly perturb the carrier relaxation dynamics in halide perovskites through the coupling between transverse- and longitudinal-optical phonons.

4.
Nano Lett ; 20(5): 4022-4028, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32330045

RESUMO

Lead halide perovskite (APbX3) nanocrystals exhibit photoluminescence (PL) with both wide wavelength tunability and high quantum efficiency. While the Pb-X6 octahedra mainly determines the near-band-edge optical properties and the A-site cation affects the structural stability, the role of the A-site cation in determining the optical properties is still unclear. Here, we report the PL properties of three types of lead bromide perovskite APbBr3 nanocrystals with different cations [A = HC(NH2)2+, CH3NH3+, and Cs+], as revealed by single-dot spectroscopy, and discuss the influence of the A-site cation on the PL spectrum. The nanocrystal size dependences of the PL energy and lifetime show no large variation with the species of the A-site cation. We find that the size of the A-site cation determines the coupling strength between electrons and longitudinal-optical phonons in the nanocrystal and thus affects the PL spectral shape, especially the low-energy tail.

5.
Opt Lett ; 45(21): 6078-6081, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137073

RESUMO

Terahertz (THz) irradiation has been exploited in biomedical applications involving non-invasive manipulation of living cells. We developed an apparatus for studying the effects of THz pulse irradiation on living human induced pluripotent stem cells. The THz pulse of the maximum electric field reached 0.5 MV/cm and was applied for one hour with 1 kHz repetition to the entire cell-culture area, a diameter of 1 mm. RNA sequencing of global gene-expression revealed that many THz-regulated genes were driven by zinc-finger transcription factors. Combined with a consideration of the interactions of metal ions and a THz electric field, these results imply that the local intracellular concentration of metal ions, such as Zn2+, was changed by the effective electrical force of our THz pulse.


Assuntos
Redes Reguladoras de Genes/efeitos da radiação , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Radiação Terahertz , Sobrevivência Celular , Eletricidade , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição/metabolismo
6.
Phys Rev Lett ; 121(16): 165702, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387634

RESUMO

We have systematically investigated the spatial and temporal dynamics of crystallization that occur in the phase-change material Ge_{2}Sb_{2}Te_{5} upon irradiation with an intense terahertz (THz) pulse. THz-pump-optical-probe spectroscopy revealed that Zener tunneling induces a nonlinear increase in the conductivity of the crystalline phase. This fact causes the large enhancement of electric field associated with the THz pulses only at the edge of the crystallized area. The electric field concentrating in this area causes a temperature increase via Joule heating, which in turn leads to nanometer-scale crystal growth parallel to the field and the formation of filamentary conductive domains across the sample.

7.
J Phys Chem Lett ; 15(8): 2184-2192, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38373145

RESUMO

High-order harmonic generation (HHG) in gases is frequently used nowadays to produce attosecond pulses and coherent radiation in the visible-to-soft X-ray spectral range. HHG in solids is a natural extension of the idea of HHG in gases, and its first observation about ten years ago opened the door to investigations on attosecond electron dynamics in solids and the development of solid-state attosecond light sources. The common process in both types of HHG is nonlinear photocarrier generation, and thus, transitions between different bands (interband transitions) are always important for HHG. As well, in the case of solids, the transitions within a band (intraband transitions) also need to be considered, because efficient carrier acceleration is possible due to them. This Perspective focuses on experimental findings that show how intraband transitions can be controlled because such an understanding will be essential in the development of unique optoelectronics that can operate at petahertz frequencies.

8.
Nat Commun ; 15(1): 4435, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789464

RESUMO

The critical current in a superconductor (SC) determines the performance of many SC devices, including SC diodes which have attracted recent attention. Hitherto, studies of SC diodes are limited in the DC-field measurements, and their performance under a high-frequency current remains unexplored. Here, we conduct the first investigation on the interaction between the DC and terahertz (THz) current in a SC artificial superlattice. We found that the DC critical current is sensitively modified by THz pulse excitations in a nontrivial manner. In particular, at low-frequency THz excitations below the SC gap, the critical current becomes sensitive to the THz-field polarization direction. Furthermore, we observed anomalous behavior in which a supercurrent flows with an amplitude larger than the modified critical current. Assuming that vortex depinning determines the critical current, we show that the THz-current-driven vortex dynamics reproduce the observed behavior. While the delicate nonreciprocity in the critical current is obscured by the THz pulse excitations, the interplay between the DC and THz current causes a non-monotonic SC/normal-state switching with current amplitude, which can pave a pathway to developing SC devices with novel functionalities.

9.
J Phys Chem Lett ; 14(37): 8360-8366, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37703207

RESUMO

Two-dimensional (2D) halide perovskites exhibit unique structural and optical properties because large organic molecular cations distort the perovskite structure and the excitons confined in the 2D layers are stable. Here, we report the temperature dependences of the absorption spectra, second harmonic generation (SHG) intensity, and lattice constants of 2D perovskite (BA)2(EA)2Pb3I10 single crystals, where BA is n-butylammonium and EA is ethylammonium. We found that the Urbach tail of the absorption spectrum significantly changes at around 200 K and that the change is correlated with the SHG intensity and the in-plane lattice distortion. We concluded that a random distribution of spontaneous polarizations in the ferroelectric phase modifies the linewidth of the band-edge exciton transition and is the cause of the anomalous temperature dependence of the steepness parameter of the Urbach tail.

10.
Nat Commun ; 14(1): 1795, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002210

RESUMO

The ability to drive a spin system to state far from the equilibrium is indispensable for investigating spin structures of antiferromagnets and their functional nonlinearities for spintronics. While optical methods have been considered for spin excitation, terahertz (THz) pulses appear to be a more convenient means of direct spin excitation without requiring coupling between spins and orbitals or phonons. However, room-temperature responses are usually limited to small deviations from the equilibrium state because of the relatively weak THz magnetic fields in common approaches. Here, we studied the magnetization dynamics in a HoFeO3 crystal at room temperature. A custom-made spiral-shaped microstructure was used to locally generate a strong multicycle THz magnetic near field perpendicular to the crystal surface; the maximum magnetic field amplitude of about 2 T was achieved. The observed time-resolved change in the Faraday ellipticity clearly showed second- and third-order harmonics of the magnetization oscillation and an asymmetric oscillation behaviour. Not only the ferromagnetic vector M but also the antiferromagnetic vector L plays an important role in the nonlinear dynamics of spin systems far from equilibrium.

11.
Nat Commun ; 12(1): 3026, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021150

RESUMO

Manipulation of excitons via coherent light-matter interaction is a promising approach for quantum state engineering and ultrafast optical modulation. Various excitation pathways in the excitonic multilevel systems provide controllability more efficient than that in the two-level system. However, these control schemes have been restricted to limited control-light wavelengths and cryogenic temperatures. Here, we report that lead halide perovskites can lift these restrictions owing to their multiband structure induced by strong spin-orbit coupling. Using CsPbBr3 perovskite nanocrystals, we observe an anomalous enhancement of the exciton energy shift at room temperature with increasing control-light wavelength from the visible to near-infrared region. The enhancement occurs because the interconduction band transitions between spin-orbit split states have large dipole moments and induce a crossover from the two-level optical Stark effect to the three-level Autler-Townes effect. Our finding establishes a basis for efficient coherent optical manipulation of excitons utilizing energy states with large spin-orbit splitting.

12.
Nat Commun ; 11(1): 3069, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555192

RESUMO

Recent advances in generation of strong laser pulses have enabled the acceleration of electrons in solids into regions far away from the band edge. Because nonlinear currents can be generated by laser-driven carriers in the non-parabolic region, tailored laser fields may allow control of optical properties of high-order harmonics (HHs). So far, investigations on laser-induced nonlinear optical phenomena have focused on the simple electron motion induced by linearly or elliptically polarized fields. However, more complex trajectories can be important for development of novel optoelectronic devices. Here, we show that a weak laser field (optical frequency is ω2) applied in a direction orthogonal to a strong main field (ω1) enhances certain HH intensity components of bulk GaSe by a factor of 100. Good agreement between the experiments and calculations shows that manipulation of the electron trajectory allows breaking inversion symmetry of the electronic states felt by the accelerated electrons and leading to a modification of selection rules for frequency-mixing processes of HHs. Owing to our usage of non-integer multiples for ω1 and ω2, it is found that the generation of HHs constitutes a novel way of ultrafast control of light polarization and optical switching.

13.
Opt Express ; 13(26): 10801-14, 2005 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19503298

RESUMO

We investigate the surface plasmon resonance at the interface between air and n-type (100) oriented-InAs as an active material with a time-domain attenuated total reflection technique with coherent terahertz pulses. The characteristic spectra of the attenuated total reflectivity and phase shift caused by surface plasmon are observed in the Otto configuration. The surface plasmon resonance frequency and the phase jump strongly depend on the wave vector of the evanescent wave, the refractive index of the prism, and the incident angle of the terahertz pulses and the distance between the prism and active material. These features can no longer be explained with conventional Otto's approximation. We show that the interference effect between the electromagnetic wave reflected at the prism-air interface and that reemitted from excited surface plasmon plays a key role in the surface plasmon resonance.

14.
Phys Rev Lett ; 97(25): 257401, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17280391

RESUMO

Photoluminescence (PL) dynamics in single-walled carbon nanotubes (SWNTs) has been studied by the femtosecond excitation correlation method with a 150 fs time resolution. The SWNT samples were synthesized by different methods and suspended in gelatin films or D2O solutions. The PL dynamics of SWNTs depends on the local environment surrounding the SWNTs rather than the synthesis methods. The very weak temperature dependence of tauPL and the environment-dependent tauPL reveal that the PL relaxation process is dominated by the interplay between free excitons and weakly localized excitons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA