RESUMO
The chemokine receptors CCR1 and CCR5 display overlapping expression patterns and ligand dependency. Here we find that ligand activation of CCR5, not CCR1, is dependent on N-terminal receptor O-glycosylation. Release from O-glycosylation dependency is obtained by increasing CCR5 N-terminus acidity to the level of CCR1. Ligand activation of CCR5, not CCR1, drastically improves in the absence of glycosaminoglycans (GAGs). Ligand activity at both CCR1 and CCR5 is boosted by positively charged/basic peptides shown to interact with acidic chemokine receptor N-termini. We propose that receptors with an inherent low N-terminus acidity rely on post-translational modifications (PTMs) to efficiently compete with acidic entities in the local environment for ligand capture. Although crucial for initial ligand binding, strong electrostatic interactions between the ligand and the receptor N-terminus may counteract following insertion of the ligand into the receptor binding pocket and activation, a process that seems to be aided in the presence of basic peptides. Basic peptides bind to the naked CCR1 N-terminus, not the CCR5 N-terminus, explaining the loss of boosting of ligand-induced signaling via CCR5 in cells incapable of glycosylation.
Assuntos
Peptídeos , Processamento de Proteína Pós-Traducional , Receptores CCR1 , Receptores CCR5 , Receptores CCR5/metabolismo , Receptores CCR5/química , Humanos , Glicosilação , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Receptores CCR1/metabolismo , Receptores CCR1/química , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Ligação Proteica , AnimaisRESUMO
The endogenous chemokines CCL19 and CCL21 signal via their common receptor CCR7. CCL21 is the main lymph node homing chemokine, but a weak chemo-attractant compared to CCL19. Here we show that the 41-amino acid positively charged peptide, released through C-terminal cleavage of CCL21, C21TP, boosts the immune cell recruiting activity of CCL21 by up to 25-fold and the signaling activity via CCR7 by ~ 100-fold. Such boosting is unprecedented. Despite the presence of multiple basic glycosaminoglycan (GAG) binding motifs, C21TP boosting of CCL21 signaling does not involve interference with GAG mediated cell-surface retention. Instead, boosting is directly dependent on O-glycosylations in the CCR7 N-terminus. As dictated by the two-step binding model, the initial chemokine binding involves interaction of the chemokine fold with the receptor N-terminus, followed by insertion of the chemokine N-terminus deep into the receptor binding pocket. Our data suggest that apart from a role in initial chemokine binding, the receptor N-terminus also partakes in a gating mechanism, which could give rise to a reduced ligand activity, presumably through affecting the ligand positioning. Based on experiments that support a direct interaction of C21TP with the glycosylated CCR7 N-terminus, we propose that electrostatic interactions between the positively charged peptide and sialylated O-glycans in CCR7 N-terminus may create a more accessible version of the receptor and thus guide chemokine docking to generate a more favorable chemokine-receptor interaction, giving rise to the peptide boosting effect.
Assuntos
Quimiocina CCL21/metabolismo , Células Dendríticas/metabolismo , Linfonodos/metabolismo , Receptores CCR7/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Transdução de Sinais/fisiologia , Animais , Células CHO , Células Cultivadas , Cricetulus , Glicosilação , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Eletricidade EstáticaRESUMO
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 regulate the lymph node homing of dendritic cells and naïve T-cells and the following induction of a motile DC-T cell priming state. Although CCL19 and CCL21 bind CCR7 with similar affinities, CCL21 is a weak agonist compared to CCL19. Using a chimeric chemokine, CCL19CCL21N-term|C-term, harboring the N-terminus and the C-terminus of CCL21 attached to the core domain of CCL19, we show that these parts of CCL21 act in a synergistic manner to lower ligand potency and determine the way CCL21 engages with CCR7. We have published that a naturally occurring basic C-terminal fragment of CCL21 (C21TP) boosts the signaling of both CCL19 and CCL21. Boosting occurs as a direct consequence of C21TP binding to the CCR7 N-terminus, which seems to free chemokines with basic C-termini from an unfavorable interaction with negatively charged posttranslational modifications in CCR7. Here, we confirm this using a CCL19-variant lacking the basic C-terminus. This variant displays a 22-fold higher potency at CCR7 compared to WT CCL19 and is highly unaffected by the presence of C21TP. WT CCL19 has a short basic C-terminus, CCL21 a longer one. Here, we propose a way to differentially boost CCL19 and CCL21 activity as short and long versions of C21TP boost CCL19 activity, whereas only a long C21TP version can boost chemokines with a full-length CCL21 C-terminus.
Assuntos
Quimiocina CCL19 , Quimiocina CCL21 , Peptídeos , Receptores CCR7 , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Ligantes , Peptídeos/metabolismo , Peptídeos/farmacologia , Receptores CCR7/metabolismo , Transdução de Sinais , Linfócitos T/metabolismoRESUMO
Chemotactic cytokines-chemokines-control immune cell migration in the process of initiation and resolution of inflammatory conditions as part of the body's defense system. Many chemokines also participate in pathological processes leading up to and exacerbating the inflammatory state characterizing chronic inflammatory diseases. In this review, we discuss the role of dendritic cells (DCs) and the central chemokine receptor CCR7 in the initiation and sustainment of selected chronic inflammatory diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. We revisit the binary role that CCR7 plays in combatting and progressing cancer, and we discuss how CCR7 and DCs can be harnessed for the treatment of cancer. To provide the necessary background, we review the differential roles of the natural ligands of CCR7, CCL19, and CCL21 and how they direct the mobilization of activated DCs to lymphoid organs and control the formation of associated lymphoid tissues (ALTs). We provide an overview of DC subsets and, briefly, elaborate on the different T-cell effector types generated upon DC-T cell priming. In the conclusion, we promote CCR7 as a possible target of future drugs with an antagonistic effect to reduce inflammation in chronic inflammatory diseases and an agonistic effect for boosting the reactivation of the immune system against cancer in cell-based and/or immune checkpoint inhibitor (ICI)-based anti-cancer therapy.
Assuntos
Doenças Autoimunes/patologia , Células Dendríticas/imunologia , Inflamação/patologia , Neoplasias/patologia , Receptores CCR7/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de SinaisRESUMO
BACKGROUND AIMS: Maturation of dendritic cells (DCs) induces their homing from peripheral to lymphatic tissues guided by CCL21. However, in vitro matured human monocyte-derived DC cancer vaccines injected intradermally migrate poorly to lymph nodes (LNs). In vitro maturation protocols generate DCs with high (type 1 DCs) or low (prostaglandin E2 [PGE2]-DCs) autocrine CCL19 levels, which may potentially interfere with LN homing of DCs. METHODS: Employing a three-dimensional (3D) chemotaxis assay, chemokine competition/desensitization studies and short interfering RNA (siRNA) against CCL19, we analyzed the effect of autocrine CCL19 on in vitro migration of human DCs toward CCL21. RESULTS: Using human monocyte-derived DCs in a 3D chemotaxis assay, we are the first to demonstrate that CCL19 more potently induces directed migration of human DCs compared with CCL21. When comparing migration of type 1 DCs and PGE2-DCs, migration of type 1 DCs was strikingly impaired compared with PGE2-DCs, but only toward low concentrations of CCL21. When type 1 DCs were cultured overnight in fresh culture medium (reducing autocrine CCL19 levels), a rescuing effect was observed on migration toward low concentrations of CCL21 in a 3D chemotaxis assay. Finally pre-incubation with CCL19 negatively affected PGE2-DC migration, whereas silencing of CCL19 by siRNA improved type 1 DC migration. Importantly, in both cases, the effect was observed only at low concentrations of CCL21. CONCLUSIONS: Our results demonstrate that autocrine CCL19 negatively affects DC migratory potential toward CCL21, the potency difference between CCL19 and CCL21 being the underlying cause. CCL19 secretion level of in vitro matured DCs is an important indicator of DC vaccine homing potential.
Assuntos
Quimiocina CCL19/metabolismo , Células Dendríticas/citologia , Movimento Celular , Células Cultivadas , Quimiocina CCL19/genética , Quimiocina CCL19/farmacologia , Quimiocina CCL21/metabolismo , Quimiotaxia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Dinoprostona/metabolismo , Humanos , Masculino , Monócitos/citologiaRESUMO
Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinements relevant to tissue models by two-photon polymerization of linear channel constructs with cross-sections from 10 × 10 µm(2) to 20 × 20 µm(2) inside commercially available chemotaxis analysis chips. Faster directed migration was observed with decreasing channel dimensions despite substantial cell deformation in the narrower channels. Finite element modeling of a cell either partly or fully obstructing chemokine diffusion in the narrow channels revealed strong local accentuation of the chemokine concentration gradients. The modeled concentration differences across a cell correlated well with the observed velocity dependence on channel cross-section. However, added effects due to spatial confinement could not be excluded. The design freedom offered by two-photon polymerization was exploited to minimize the accentuated concentration gradients in cell-blocked channels by introducing "venting slits" to the surrounding medium at a length scale too small (≤500 nm) for the cells to explore, thereby decoupling effects of concentration gradients and spatial confinement. Studies in slitted 10 × 10 µm(2) channels showed significantly reduced migration speeds indistinguishable from speeds observed in unslitted 20 × 20 µm(2) channel. This result agrees with model predictions of very small concentration gradient variations in slitted channels, thus indicating a strong influence of the concentration gradient steepness, not the channel size, on the directed migration velocity.
Assuntos
Quimiotaxia , Células Dendríticas/citologia , Procedimentos Analíticos em Microchip/métodos , Movimento Celular , Células Dendríticas/fisiologia , Difusão , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Dispositivos Lab-On-A-Chip , Fótons , Polimerização , Imagem com Lapso de Tempo/métodosRESUMO
B1 cells constitute a specialized subset of B cells, best characterized in mice, which is abundant in body cavities, including the peritoneal cavity. Through natural and antigen-induced antibody production, B1 cells participate in the early defense against bacteria. The G protein-coupled receptor 183 (GPR183), also known as Epstein-Barr virus-induced gene 2 (EBI2), is an oxysterol-activated chemotactic receptor that regulates migration of B cells. We investigated the role of GPR183 in B1 cells in the peritoneal cavity and omentum. B1 cells expressed GPR183 at the mRNA level and migrated towards the GPR183 ligand 7α,25-dihydroxycholesterol (7α,25-OHC). GPR183 knock-out (KO) mice had smaller omenta, but with normal numbers of B1 cells, whereas they had fewer B2 cells in the omentum and peritoneal cavity than wildtype (WT) mice. GPR183 was not responsible for B1 cell accumulation in the omentum in response to i.p. lipopolysaccharide (LPS)-injection, in spite of a massive increase in 7α,25-OHC levels. Lack of GPR183 also did not affect B1a- or B1b cell-specific antibody responses after vaccination. In conclusion, we found that GPR183 is non-essential for the accumulation and function of B1 cells in the omentum and peritoneal cavity, but that it influences the abundance of B2 cells in these compartments.
Assuntos
Subpopulações de Linfócitos B , Infecções por Vírus Epstein-Barr , Omento , Cavidade Peritoneal , Receptores Acoplados a Proteínas G , Animais , Subpopulações de Linfócitos B/citologia , Herpesvirus Humano 4 , Hidroxicolesteróis , Camundongos , Camundongos Knockout , Omento/citologia , Cavidade Peritoneal/citologia , Receptores Acoplados a Proteínas G/genéticaRESUMO
The choroid plexus (CP) plays a major role in controlling the entry of substances and immune cells into the brain as it forms the blood-cerebrospinal fluid barrier (BCSFB) in the brain ventricles. Dysregulated immune cell trafficking through the epithelial cell (EC) layer of CP is central for the pathogenesis of infectious diseases in the brain and many neurodegenerative disorders. In vitro studies elucidating the function of the CP have so far been limited to the monolayer culture of CP ECs. To mimic immune cell migration across the CP barrier, a three-dimensional model would be advantageous. Here, we present an in vitro platform for studies of the immune cell trafficking based on CP explants/organoids. The explants were generated from fragments of mouse CPs in Matrigel, where the cells formed luminal spaces and could be maintained in culture for at least 8 weeks. We demonstrate expression of the major CP markers in the explants, including transthyretin and aquaporin 1 as well as ZO1 and ICAM-1, indicating a capacity for secretion of cerebrospinal fluid (CSF) and presence of tight junctions. CP explants displayed CP-like cell polarization and formed an intact EC barrier. We also show that the expression of transthyretin, transferrin, occludin and other genes associated with various functions of CP was maintained in the explants at similar levels as in native CP. By using dendritic cells and neutrophils, we show that the migration activity of immune cells and their interactions with CP epithelium can be monitored by microscopy. Thereby, the three-dimensional CP explant model can be used to study the cellular and molecular mechanisms mediating immune cell migration through CP epithelium and other functions of choroid EC. We propose this platform can potentially be used in the search for therapeutic targets and intervention strategies to improve control of (drug) substances and (immune) cell entry into the central nervous system.
RESUMO
The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors occurs via two major routes, G protein- and ß-arrestin-dependent, which can be preferentially modulated depending on the ligands or receptors involved, as well as the cell types or tissues in which the signaling event occurs. The preferential activation of a certain signaling pathway to the detriment of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein-dependent and -independent signaling in order to quantify chemokine system bias.
Assuntos
Quimiocinas/metabolismo , Biologia Molecular/métodos , Receptores de Quimiocinas/metabolismo , Animais , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ligantes , Terapia de Alvo Molecular/métodos , Receptores de Quimiocinas/análise , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas/metabolismoRESUMO
In this work we report a design, synthesis, and detailed functional characterization of unique strongly biased allosteric agonists of CXCR3 that contain tetrahydroisoquinoline carboxamide cores. Compound 11 (FAUC1036) is the first strongly biased allosteric agonist of CXCR3 that selectively induces weak chemotaxis and leads to receptor internalization and the ß-arrestin 2 recruitment with potency comparable to that of the chemokine CXCL11 without any activation of G proteins. A subtle structural change (addition of a methoxy group, 14 (FAUC1104)) led to a contrasting biased allosteric partial agonist that activated solely G proteins, induced chemotaxis, but failed to induce receptor internalization or ß-arrestin 2 recruitment. Concomitant structure-activity relationship studies indicated very steep structure-activity relationships, which steer the ligand bias between the ß-arrestin 2 and G protein pathway. Overall, the information presented provides a powerful platform for further development and rational design of strongly biased allosteric agonists of CXCR3.
Assuntos
Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas , Receptores CXCR3/agonistas , Tetra-Hidroisoquinolinas/farmacologia , Animais , Células COS , Movimento Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Estrutura Molecular , Receptores CXCR3/metabolismo , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/químicaRESUMO
Free-form constructs with three-dimensional (3D) microporosity were fabricated by two-photon polymerization inside the closed microchannel of an injection-molded, commercially available polymer chip for analysis of directed cell migration. Acrylate constructs were produced as woodpile topologies with a range of pore sizes from 5 × 5 µm to 15 × 15 µm and prefilled with fibrillar collagen. Dendritic cells seeded into the polymer chip in a concentration gradient of the chemoattractant CCL21 efficiently negotiated the microporous maze structure for pore sizes of 8 × 8 µm or larger. The cells migrating through smaller pore sizes made significantly more turns than those through larger pores. The introduction of additional defined barriers in the microporous structure resulted in dendritic cells making more turns while still being able to follow the chemoattractant concentration gradient.
Assuntos
Movimento Celular , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Células Dendríticas/citologia , Desenho de Equipamento , Monócitos/citologia , PorosidadeRESUMO
Monocyte-derived dendritic cells (DCs) used for immunotherapy e.g. against cancer are commonly matured by pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6) and prostaglandin E(2) although the absence of Toll-like receptor mediated activation prevents secretion of IL-12 from DCs and subsequent efficient induction of type 1 effector T cells. Standard matured clinical grade DCs "sDCs" were compared with DCs matured with either of two type 1 polarizing maturation cocktails; the alpha-type-1 DCs "αDC1s" (TNF-α, IL-1ß, IFN-γ, IFN-α, Poly(I:C)) and "mDCs" (monophosphoryl lipid A (MPL), IFN-γ) or a mixed cocktail - "mpDCs", containing MPL, IFN-γ and PGE(2). αDC1s and mDCs secreted IL-12 directly and following re-stimulation with CD40L-expressing cells and they mainly secreted the T effector cell attracting chemokines CXCL10 and CCL5 as opposed to sDCs that mainly secreted CCL22, known to attract regulatory T cells. αDC1s and mDCs were functionally superior to sDCs as they polarized naïve CD4(+) T cells most efficiently into T helper type 1 effector cells and primed more functional MART-1 specific CD8(+) T cells although with variation between donors. αDC1s and mDCs were transiently less capable of CCL21-directed transwell migration than standard matured DCs, likely due to their increased secretion of CCL19, which mediate internalization of CCR7. mpDCs were intermediate between standard and polarized DCs both in terms of IL-12 secretion and transwell migratory ability but functionally they resembled sDCs and strikingly had the highest expression of the inhibitory molecules PD-L1 and CD25. Thus, further studies with type 1 polarized DCs are warranted for use in immunotherapy, but when combined with PGE(2) as in mpDCs, they seems to be less optimal for maturation of DCs.
Assuntos
Vacinas Anticâncer/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Células Th1/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular , Movimento Celular , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/citologia , Humanos , Interferon gama , Lipídeo A/análogos & derivados , Neoplasias/imunologia , Células Th1/metabolismoRESUMO
In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre-adsorption of bovine serum albumin (BSA) does not decrease the adsorption of HIS-tagged proteins onto TCPS. Our findings identify a potential problem in using HIS-tagged signalling molecule in assays with cells cultured on TCPS, since the concentration of the molecule in solution might be affected and this could critically influence the assay outcome.