Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(3): 31, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353870

RESUMO

To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data.


Assuntos
COVID-19 , SARS-CoV-2 , Estados Unidos/epidemiologia , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Conceitos Matemáticos , Modelos Biológicos , Vacinação
2.
Bioinformatics ; 38(6): 1770-1772, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986226

RESUMO

SUMMARY: Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty. AVAILABILITY AND IMPLEMENTATION: PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Humanos , Cadeias de Markov , Teorema de Bayes , Algoritmos , Software , Método de Monte Carlo
3.
Emerg Infect Dis ; 27(3): 767-778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622460

RESUMO

To increase situational awareness and support evidence-based policymaking, we formulated a mathematical model for coronavirus disease transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a nonexponentially distributed incubation period, asymptomatic persons, and mild and severe forms of symptomatic disease. We used Bayesian inference to calibrate region-specific models for consistency with daily reports of confirmed cases in the 15 most populous metropolitan statistical areas in the United States. We also quantified uncertainty in parameter estimates and forecasts. This online learning approach enables early identification of new trends despite considerable variability in case reporting.


Assuntos
Infecções por Coronavirus/epidemiologia , Epidemias , Previsões/métodos , Teorema de Bayes , Coronavirus , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Epidemias/prevenção & controle , Humanos , Incidência , Modelos Teóricos , Incerteza , Estados Unidos/epidemiologia
4.
Bioinformatics ; 36(10): 3177-3184, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049328

RESUMO

MOTIVATION: Recent work has demonstrated the feasibility of using non-numerical, qualitative data to parameterize mathematical models. However, uncertainty quantification (UQ) of such parameterized models has remained challenging because of a lack of a statistical interpretation of the objective functions used in optimization. RESULTS: We formulated likelihood functions suitable for performing Bayesian UQ using qualitative observations of underlying continuous variables or a combination of qualitative and quantitative data. To demonstrate the resulting UQ capabilities, we analyzed a published model for immunoglobulin E (IgE) receptor signaling using synthetic qualitative and quantitative datasets. Remarkably, estimates of parameter values derived from the qualitative data were nearly as consistent with the assumed ground-truth parameter values as estimates derived from the lower throughput quantitative data. These results provide further motivation for leveraging qualitative data in biological modeling. AVAILABILITY AND IMPLEMENTATION: The likelihood functions presented here are implemented in a new release of PyBioNetFit, an open-source application for analyzing Systems Biology Markup Language- and BioNetGen Language-formatted models, available online at www.github.com/lanl/PyBNF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Biologia de Sistemas , Teorema de Bayes , Funções Verossimilhança , Incerteza
5.
Semin Cancer Biol ; 54: 162-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29518522

RESUMO

RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo , Animais , Proteínas de Transporte , Descoberta de Drogas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Transporte Proteico , Biologia de Sistemas/métodos , Proteínas ras/antagonistas & inibidores , Proteínas ras/química
6.
PLoS Comput Biol ; 15(1): e1006706, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653502

RESUMO

Receptor tyrosine kinases (RTKs) typically contain multiple autophosphorylation sites in their cytoplasmic domains. Once activated, these autophosphorylation sites can recruit downstream signaling proteins containing Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains, which recognize phosphotyrosine-containing short linear motifs (SLiMs). These domains and SLiMs have polyspecific or promiscuous binding activities. Thus, multiple signaling proteins may compete for binding to a common SLiM and vice versa. To investigate the effects of competition on RTK signaling, we used a rule-based modeling approach to develop and analyze models for ligand-induced recruitment of SH2/PTB domain-containing proteins to autophosphorylation sites in the insulin-like growth factor 1 (IGF1) receptor (IGF1R). Models were parameterized using published datasets reporting protein copy numbers and site-specific binding affinities. Simulations were facilitated by a novel application of model restructuration, to reduce redundancy in rule-derived equations. We compare predictions obtained via numerical simulation of the model to those obtained through simple prediction methods, such as through an analytical approximation, or ranking by copy number and/or KD value, and find that the simple methods are unable to recapitulate the predictions of numerical simulations. We created 45 cell line-specific models that demonstrate how early events in IGF1R signaling depend on the protein abundance profile of a cell. Simulations, facilitated by model restructuration, identified pairs of IGF1R binding partners that are recruited in anti-correlated and correlated fashions, despite no inclusion of cooperativity in our models. This work shows that the outcome of competition depends on the physicochemical parameters that characterize pairwise interactions, as well as network properties, including network connectivity and the relative abundances of competitors.


Assuntos
Modelos Biológicos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Análise por Conglomerados , Biologia Computacional , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Domínios de Homologia de src
7.
J Immunol ; 198(3): 1034-1046, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039304

RESUMO

Ag-mediated crosslinking of IgE-FcεRI complexes activates mast cells and basophils, initiating the allergic response. Of 34 donors recruited having self-reported shrimp allergy, only 35% had significant levels of shrimp-specific IgE in serum and measurable basophil secretory responses to rPen a 1 (shrimp tropomyosin). We report that degranulation is linked to the number of FcεRI occupied with allergen-specific IgE, as well as the dose and valency of Pen a 1. Using clustered regularly interspaced palindromic repeat-based gene editing, human RBLrαKO cells were created that exclusively express the human FcεRIα subunit. Pen a 1-specific IgE was affinity purified from shrimp-positive plasma. Cells primed with a range of Pen a 1-specific IgE and challenged with Pen a 1 showed a bell-shaped dose response for secretion, with optimal Pen a 1 doses of 0.1-10 ng/ml. Mathematical modeling provided estimates of receptor aggregation kinetics based on FcεRI occupancy with IgE and allergen dose. Maximal degranulation was elicited when ∼2700 IgE-FcεRI complexes were occupied with specific IgE and challenged with Pen a 1 (IgE epitope valency of ≥8), although measurable responses were achieved when only a few hundred FcεRI were occupied. Prolonged periods of pepsin-mediated Pen a 1 proteolysis, which simulates gastric digestion, were required to diminish secretory responses. Recombinant fragments (60-79 aa), which together span the entire length of tropomyosin, were weak secretagogues. These fragments have reduced dimerization capacity, compete with intact Pen a 1 for binding to IgE-FcεRI complexes, and represent a starting point for the design of promising hypoallergens for immunotherapy.


Assuntos
Alérgenos/imunologia , Receptores de IgE/metabolismo , Basófilos/fisiologia , Degranulação Celular , Relação Dose-Resposta Imunológica , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/metabolismo
8.
Bull Math Biol ; 81(8): 2822-2848, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29594824

RESUMO

Gillespie's direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie's direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termed network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie's direct method for network-free simulation. Finally, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.


Assuntos
Algoritmos , Simulação por Computador , Biologia de Sistemas/métodos , Fenômenos Bioquímicos , Cinética , Conceitos Matemáticos , Redes e Vias Metabólicas , Modelos Biológicos , Método de Monte Carlo , Processos Estocásticos , Terminologia como Assunto
9.
J Chem Phys ; 150(24): 244101, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255063

RESUMO

Various kinetic Monte Carlo algorithms become inefficient when some of the population sizes in a system are large, which gives rise to a large number of reaction events per unit time. Here, we present a new acceleration algorithm based on adaptive and heterogeneous scaling of reaction rates and stoichiometric coefficients. The algorithm is conceptually related to the commonly used idea of accelerating a stochastic simulation by considering a subvolume λΩ (0 < λ < 1) within a system of interest, which reduces the number of reaction events per unit time occurring in a simulation by a factor 1/λ at the cost of greater error in unbiased estimates of first moments and biased overestimates of second moments. Our new approach offers two unique benefits. First, scaling is adaptive and heterogeneous, which eliminates the pitfall of overaggressive scaling. Second, there is no need for an a priori classification of populations as discrete or continuous (as in a hybrid method), which is problematic when discreteness of a chemical species changes during a simulation. The method requires specification of only a single algorithmic parameter, Nc, a global critical population size above which populations are effectively scaled down to increase simulation efficiency. The method, which we term partial scaling, is implemented in the open-source BioNetGen software package. We demonstrate that partial scaling can significantly accelerate simulations without significant loss of accuracy for several published models of biological systems. These models characterize activation of the mitogen-activated protein kinase ERK, prion protein aggregation, and T-cell receptor signaling.

10.
Bioinformatics ; 33(22): 3667-3669, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29036531

RESUMO

SUMMARY: Rule-based modeling is a powerful approach for studying biomolecular site dynamics. Here, we present SPATKIN, a general-purpose simulator for rule-based modeling in two spatial dimensions. The simulation algorithm is a lattice-based method that tracks Brownian motion of individual molecules and the stochastic firing of rule-defined reaction events. Because rules are used as event generators, the algorithm is network-free, meaning that it does not require to generate the complete reaction network implied by rules prior to simulation. In a simulation, each molecule (or complex of molecules) is taken to occupy a single lattice site that cannot be shared with another molecule (or complex). SPATKIN is capable of simulating a wide array of membrane-associated processes, including adsorption, desorption and crowding. Models are specified using an extension of the BioNetGen language, which allows to account for spatial features of the simulated process. AVAILABILITY AND IMPLEMENTATION: The C ++ source code for SPATKIN is distributed freely under the terms of the GNU GPLv3 license. The source code can be compiled for execution on popular platforms (Windows, Mac and Linux). An installer for 64-bit Windows and a macOS app are available. The source code and precompiled binaries are available at the SPATKIN Web site (http://pmbm.ippt.pan.pl/software/spatkin). CONTACT: spatkin.simulator@gmail.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Software , Algoritmos
11.
Bioinformatics ; 32(5): 798-800, 2016 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26556387

RESUMO

UNLABELLED: Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. AVAILABILITY AND IMPLEMENTATION: BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: bionetgen.help@gmail.com.


Assuntos
Software
12.
Biophys J ; 108(7): 1819-1829, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25863072

RESUMO

Proteins in cell signaling networks tend to interact promiscuously through low-affinity interactions. Consequently, evaluating the physiological importance of mapped interactions can be difficult. Attempts to do so have tended to focus on single, measurable physicochemical factors, such as affinity or abundance. For example, interaction importance has been assessed on the basis of the relative affinities of binding partners for a protein of interest, such as a receptor. However, multiple factors can be expected to simultaneously influence the recruitment of proteins to a receptor (and the potential of these proteins to contribute to receptor signaling), including affinity, abundance, and competition, which is a network property. Here, we demonstrate that measurements of protein copy numbers and binding affinities can be integrated within the framework of a mechanistic, computational model that accounts for mass action and competition. We use cell line-specific models to rank the relative importance of protein-protein interactions in the epidermal growth factor receptor (EGFR) signaling network for 11 different cell lines. Each model accounts for experimentally characterized interactions of six autophosphorylation sites in EGFR with proteins containing a Src homology 2 and/or phosphotyrosine-binding domain. We measure importance as the predicted maximal extent of recruitment of a protein to EGFR following ligand-stimulated activation of EGFR signaling. We find that interactions ranked highly by this metric include experimentally detected interactions. Proteins with high importance rank in multiple cell lines include proteins with recognized, well-characterized roles in EGFR signaling, such as GRB2 and SHC1, as well as a protein with a less well-defined role, YES1. Our results reveal potential cell line-specific differences in recruitment.


Assuntos
Conjuntos de Dados como Assunto , Modelos Biológicos , Proteoma/metabolismo , Transdução de Sinais , Animais , Receptores ErbB/metabolismo , Células HeLa , Humanos , Proteoma/química , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Domínios de Homologia de src
13.
Phys Biol ; 12(4): 045007, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26178138

RESUMO

Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions.


Assuntos
Biologia Computacional , Modelos Biológicos , Estrutura Terciária de Proteína , Proteínas/química , Modelos Químicos
14.
Biochemistry ; 53(16): 2594-604, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24697349

RESUMO

Adaptor protein Grb2 binds phosphotyrosines in the epidermal growth factor (EGF) receptor (EGFR) and thereby links receptor activation to intracellular signaling cascades. Here, we investigated how recruitment of Grb2 to EGFR is affected by the spatial organization and quaternary state of activated EGFR. We used the techniques of image correlation spectroscopy (ICS) and lifetime-detected Förster resonance energy transfer (also known as FLIM-based FRET or FLIM-FRET) to measure ligand-induced receptor clustering and Grb2 binding to activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected with fluorescently labeled forms of Grb2 (Grb2-mRFP) and EGFR (EGFR-eGFP). Following stimulation of the cells with EGF, we detected nanometer-scale association of Grb2-mRFP with EGFR-eGFP clusters, which contained, on average, 4 ± 1 copies of EGFR-eGFP per cluster. In contrast, the pool of EGFR-eGFP without Grb2-mRFP had an average cluster size of 1 ± 0.3 EGFR molecules per punctum. In the absence of EGF, there was no association between EGFR-eGFP and Grb2-mRFP. To interpret these data, we extended our recently developed model for EGFR activation, which considers EGFR oligomerization up to tetramers, to include recruitment of Grb2 to phosphorylated EGFR. The extended model, with adjustment of one new parameter (the ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1% of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2. Together, our experimental and modeling results further implicate tetrameric EGFR as the key signaling unit and call into question the widely held view that dimeric EGFR is the predominant signaling unit.


Assuntos
Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/metabolismo , Animais , Receptores ErbB/química , Receptores ErbB/genética , Transferência Ressonante de Energia de Fluorescência , Proteína Adaptadora GRB2/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Modelos Moleculares , Modelos Teóricos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
PLoS Comput Biol ; 9(9): e1003217, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086117

RESUMO

In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of ß-catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, ß-catenin, serine/threonine kinases, and other proteins. The kinases CK1α and GSK -3ß, which are recruited by Axin, mediate phosphorylation of ß-catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of ß-catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of ß-catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to ß-catenin, provided that Axin is limiting, and thereby sequester ß-catenin away from Axin and the Axin-recruited kinases CK1α and GSK -3ß. Full-length APC also competes with Axin for binding to ß-catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring ß-catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on ß-catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by CK1ε, we suggest that CK1ε is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of CK1ε is predicted to limit binding of ß-catenin to truncated APC and thereby to reverse the effect of APC truncation.


Assuntos
Neoplasias Colorretais/genética , Genes APC , Humanos , Hidrólise , Mutação , Fosforilação , Regulação para Cima , beta Catenina/genética , beta Catenina/metabolismo
16.
PLoS Comput Biol ; 9(1): e1002881, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341768

RESUMO

Physicochemical properties of DNA, such as shape, affect protein-DNA recognition. However, the properties of DNA that are most relevant for predicting the binding sites of particular transcription factors (TFs) or classes of TFs have yet to be fully understood. Here, using a model that accurately captures the melting behavior and breathing dynamics (spontaneous local openings of the double helix) of double-stranded DNA, we simulated the dynamics of known binding sites of the TF and nucleoid-associated protein Fis in Escherichia coli. Our study involves simulations of breathing dynamics, analysis of large published in vitro and genomic datasets, and targeted experimental tests of our predictions. Our simulation results and available in vitro binding data indicate a strong correlation between DNA breathing dynamics and Fis binding. Indeed, we can define an average DNA breathing profile that is characteristic of Fis binding sites. This profile is significantly enriched among the identified in vivo E. coli Fis binding sites. To test our understanding of how Fis binding is influenced by DNA breathing dynamics, we designed base-pair substitutions, mismatch, and methylation modifications of DNA regions that are known to interact (or not interact) with Fis. The goal in each case was to make the local DNA breathing dynamics either closer to or farther from the breathing profile characteristic of a strong Fis binding site. For the modified DNA segments, we found that Fis-DNA binding, as assessed by gel-shift assay, changed in accordance with our expectations. We conclude that Fis binding is associated with DNA breathing dynamics, which in turn may be regulated by various nucleotide modifications.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Sítios de Ligação , Modelos Moleculares , Ligação Proteica
17.
J Immunol ; 189(2): 646-58, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22711887

RESUMO

BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.


Assuntos
Simulação por Computador , Modelos Imunológicos , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Receptores de Antígenos de Linfócitos B/fisiologia , Transdução de Sinais/imunologia , Quinases da Família src/fisiologia , Animais , Sinalização do Cálcio/imunologia , Retroalimentação Fisiológica , Humanos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Quinases da Família src/deficiência , Quinases da Família src/metabolismo
18.
Nucleic Acids Res ; 40(22): e175, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22923524

RESUMO

Typical approaches for predicting transcription factor binding sites (TFBSs) involve use of a position-specific weight matrix (PWM) to statistically characterize the sequences of the known sites. Recently, an alternative physicochemical approach, called SiteSleuth, was proposed. In this approach, a linear support vector machine (SVM) classifier is trained to distinguish TFBSs from background sequences based on local chemical and structural features of DNA. SiteSleuth appears to generally perform better than PWM-based methods. Here, we improve the SiteSleuth approach by considering both new physicochemical features and algorithmic modifications. New features are derived from Gibbs energies of amino acid-DNA interactions and hydroxyl radical cleavage profiles of DNA. Algorithmic modifications consist of inclusion of a feature selection step, use of a nonlinear kernel in the SVM classifier, and use of a consensus-based post-processing step for predictions. We also considered SVM classification based on letter features alone to distinguish performance gains from use of SVM-based models versus use of physicochemical features. The accuracy of each of the variant methods considered was assessed by cross validation using data available in the RegulonDB database for 54 Escherichia coli TFs, as well as by experimental validation using published ChIP-chip data available for Fis and Lrp.


Assuntos
DNA/química , Máquina de Vetores de Suporte , Fatores de Transcrição/metabolismo , Algoritmos , Inteligência Artificial , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Proteína Reguladora de Resposta a Leucina/metabolismo , Motivos de Nucleotídeos
19.
Adv Exp Med Biol ; 844: 245-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25480645

RESUMO

The immune system plays a central role in human health. The activities of immune cells, whether defending an organism from disease or triggering a pathological condition such as autoimmunity, are driven by the molecular machinery of cellular signaling systems. Decades of experimentation have elucidated many of the biomolecules and interactions involved in immune signaling and regulation, and recently developed technologies have led to new types of quantitative, systems-level data. To integrate such information and develop nontrivial insights into the immune system, computational modeling is needed, and it is essential for modeling methods to keep pace with experimental advances. In this chapter, we focus on the dynamic, site-specific, and context-dependent nature of interactions in immunoreceptor signaling (i.e., the biomolecular site dynamics of immunoreceptor signaling), the challenges associated with capturing these details in computational models, and how these challenges have been met through use of rule-based modeling approaches.


Assuntos
Simulação por Computador , Sistema Imunitário/metabolismo , Modelos Biológicos , Receptores Imunológicos/metabolismo , Animais , Sítios de Ligação/imunologia , Biologia Computacional , Humanos , Ativação Linfocitária/imunologia , Receptores Imunológicos/imunologia , Transdução de Sinais/imunologia
20.
medRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34704095

RESUMO

To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data. One-Sentence Summary: Using a compartmental model parameterized to reproduce available reports of new Coronavirus Disease 2019 (COVID-19) cases, we quantified the impacts of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2) on regional epidemics in the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA