Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 40(11): 2477-80, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030536

RESUMO

This Letter proposes a W-band OFDM RoF system at 103.5 GHz employing power detector to support vector signal down-conversion. Additional RF tone is generated and transmitted from central office to replace the local oscillator at a wireless receiver. With a proper frequency gap and power ratio between the RF tone and the OFDM-modulated signal, the impact from signal-to-signal beating interference can be minimized. The data rate can achieve a 40 Gbps 16 QAM OFDM signal over 25 km fiber and 2 m wireless transmission.

2.
Opt Express ; 22(4): 3911-7, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663711

RESUMO

With broader available bandwidth, W-band wireless transmission has attracted a lot of interests for future Giga-bit communication. In this article, we experimentally demonstrate W-band radio-over-fiber (RoF) system employing single-sideband single-carrier (SSB-SC) modulation with lower peak-to-average-power ratio (PAPR) than orthogonal frequency division multiplex (OFDM). To overcome the inter-symbol interference (ISI) of the penalty from uneven frequency response and SSB-SC modulation, frequency domain equalizer (FDE) and decision feedback equalizer (DFE) are implemented. We discuss the maximum available bandwidth of different modulation formats between SSB-SC and OFDM signals at the BER below forward error correction (FEC) threshold (3.8 × 10(-3)). Up to 50-Gbps 32-QAM SSB-SC signals with spectral efficiency of 5 bit/s/Hz can be achieved.

3.
Opt Lett ; 39(6): 1358-61, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690787

RESUMO

This article proposes and experimentally demonstrates a radio-over-fiber system employing single-sideband single-carrier (SSB-SC) modulation at 60 GHz. SSB-SC modulation has a lower peak-to-average-power ratio than orthogonal frequency division multiplex (OFDM) modulation; therefore, the SSB-SC signals provide superior nonlinear tolerance, compared to OFDM signals. Moreover, multiple-input multiple-output (MIMO) technology was used extensively to enhance spectral efficiency. A least-mean-square-based equalizer was implemented, including MIMO channel estimation, frequency response equalization, and I/Q imbalance compensation to recover the MIMO signals. Thus, using 2×2 MIMO technology and 64-QAM SSB-SC signals, we achieved the highest data rate of 84 Gbps with 12 bit/s/Hz spectral efficiency using the 7-GHz license-free band at 60 GHz.

4.
Opt Express ; 21(14): 16615-20, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938512

RESUMO

W-band wireless transmission has attracted a lot of interest due to its wider available bandwidth (i.e. 75-110 GHz). In this article, we propose a direct-detection orthogonal frequency division multiplexing radio over fiber (OFDM-RoF) system via two cascaded single-drive MZMs at center frequency of 103 GHz. We discuss maximum bandwidth of different modulation formats under forward error correction (FEC) threshold (3.8 x 10(-3)). Up to 40-Gbps 16-QAM OFDM signals is achieved over 25-km fiber and 2-m wireless transmission. To overcome the penalty from uneven frequency response, bit-loading algorithm is applied to discuss data rate and spectral efficiency with signal bandwidth from 5 to 10 GHz. With 10-GHz bandwidth, 46.4-Gb/s data rate and 4.64-bit/s/Hz spectral efficiency was achieved. To achieve 40-Gbps data rate, the required bandwidth of OFDM signal with bit-loading is 2 GHz less than that without bit-loading.


Assuntos
Algoritmos , Interferometria/instrumentação , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
5.
Opt Express ; 20(1): 562-7, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22274377

RESUMO

This work experimentally demonstrates the efficacy of the 2 × 2 multiple-input multiple-output (MIMO) technique for capacity improvement of a 60-GHz radio-over-fiber (RoF) system employing single-carrier modulation format. We employ frequency domain equalization (FDE) to estimate the channel response, including frequency response of the 60 GHz RoF system and the MIMO wireless channel. Using FDE and MIMO techniques, we experimentally demonstrate the doubling the of wireless data capacity of a 60 GHz RoF system to 27.15 Gb/s using 16-QAM modulation format, with transmission over 25 km of standard single-mode fiber and 3 m wireless distance.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Dispositivos Ópticos , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Micro-Ondas , Ondas de Rádio
6.
Nanomaterials (Basel) ; 8(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518057

RESUMO

In this study, we sought to enhance the output power and conversion efficiency of textured silicon solar cells by layering two-dimensional indium nanoparticles (In NPs) within a double-layer (SiNx/SiO2) antireflective coating (ARC) to induce plasmonic forward scattering. The plasmonic effects were characterized using Raman scattering, absorbance spectra, optical reflectance, and external quantum efficiency. We compared the optical and electrical performance of cells with and without single layers and double layers of In NPs. The conversion efficiency of the cell with a double layer of In NPs (16.97%) was higher than that of the cell with a single layer of In NPs (16.61%) and greatly exceeded that of the cell without In NPs (16.16%). We also conducted a comprehensive study on the light-trapping performance of the textured silicon solar cells with and without layers of In NPs within the double layer of ARC at angles from 0° to 75°. The total electrical output power of cells under air mass (AM) 1.5 G illumination was calculated. The application of a double layer of In NPs enabled an impressive 53.42% improvement in electrical output power (compared to the cell without NPs) thanks to the effects of plasmonic forward scattering.

7.
Nanomaterials (Basel) ; 7(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065487

RESUMO

This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆η) of 19.39%, far exceeding the ∆η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA