Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 595, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238335

RESUMO

This work aims to investigate how smoking exerts effect on the development of inflammatory bowel disease (IBD). A prospective cohort study and a Mendelian randomization study are first conducted to evaluate the association between smoking behaviors, smoking-related DNA methylation and the risks of Crohn's disease (CD) and ulcerative colitis (UC). We then perform both genome-wide methylation analysis and co-localization analysis to validate the observed associations. Compared to never smoking, current and previous smoking habits are associated with increased CD (P = 7.09 × 10-10) and UC (P < 2 × 10-16) risk, respectively. DNA methylation alteration at cg17742416 [DNMT3A] is linked to both CD (P = 7.30 × 10-8) and UC (P = 1.04 × 10-4) risk, while cg03599224 [LTA/TNF] is associated with CD risk (P = 1.91 × 10-6), and cg14647125 [AHRR] and cg23916896 [AHRR] are linked to UC risk (P = 0.001 and 0.002, respectively). Our study identifies biological mechanisms and pathways involved in the effects of smoking on the pathogenesis of IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Fumar/efeitos adversos , Fumar/genética , Metilação de DNA , Estudos Prospectivos , Doenças Inflamatórias Intestinais/genética , Doença de Crohn/genética , Colite Ulcerativa/genética , Proteínas Repressoras/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
2.
Crohns Colitis 360 ; 6(1): otae003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352118

RESUMO

Background: Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim: We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods: We characterized FPR1 gene and protein expression in 8 human IBD (~1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results: Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions: Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification.

3.
Gastro Hep Adv ; 2(6): 788-798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39130118

RESUMO

Background and Aims: Inflammatory bowel disease (IBD) is associated with increased circulating damage-associated molecular patterns, in particular, the highly pro-inflammatory mitochondrial DNA (mtDNA). Here, we study the importance of blood neutrophils in mtDNA release via neutrophil extracellular trap (NET) formation and mitochondrial NETosis, where neutrophils specifically expulse mtDNA as potential targetable biological pathways. Methods: We investigated the roles of A23187 (a known NET stimulant), granulocyte macrophage stimulating factor, lipopolysaccharide (LPS), and human IBD plasma in their ability to induce NET formation, mitochondrial NETosis, mtDNA, and total DNA release from human blood neutrophils; and the evidence for increased NET formation in IBD. Results: We demonstrated that NET formation resulted in significant DNA (P < .0001) and mtDNA release (P < .0001) with long DNA fragments (>1000 base pairs) with NETs containing high levels of mtDNA. Using previously described in vitro conditions for mitochondrial NETosis, granulocyte macrophage stimulating factor + LPS triggered neutrophil mtDNA release at lower levels but not NETosis. LPS alone can trigger neutrophilic DNA release without NET formation. Heterologous coculture with plasma from patients with active IBD (vs remission [n = 6/group]) were not associated with significantly higher levels of NETs and mtDNA release. During coculture with active IBD plasma (vs remission), citrullinated histone 3 (CitH3) (a NETs biomarker) levels were significantly lower (P < .001). Similarly, CitH3 levels were lower in stool supernatants of patients with active IBD vs remission (n = 19/12, P = .0001). Stool CitH3 negatively correlates with stool calprotectin, a biomarker for gut inflammation (r = -0.47, P = .03). Conclusion: Hence, although blood neutrophils remain an important source of circulating mtDNA with defined mechanisms for release via NET formation and during neutrophil activation, our data do not support excessive systemic NET formation as a dominant underpinning pathobiological process in IBD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA