Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Trends Biochem Sci ; 46(3): 171-174, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309326

RESUMO

Global translational remodeling has emerged as a principal mechanism of biological adaptation. Oxygen deficiency (hypoxia) disables the basal protein synthesis machinery ('Jekyll') and activates a hypoxic translational architecture ('Hyde') to drive translatome remodeling. Independent from mRNA-level fluctuations, this newer paradigm modernizes a field traditionally dominated by the hypoxia-inducible factor (HIF) transcriptional program.


Assuntos
Hipóxia , Biossíntese de Proteínas , Hipóxia Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Oxigênio , RNA Mensageiro/metabolismo
2.
J Immunol ; 204(5): 1173-1187, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31996458

RESUMO

Homogeneous populations of mature differentiated primary cell types can display variable responsiveness to extracellular stimuli, although little is known about the underlying mechanisms that govern such heterogeneity at the level of gene expression. In this article, we show that morphologically homogenous human endothelial cells exhibit heterogeneous expression of VCAM1 after TNF-α stimulation. Variability in VCAM1 expression was not due to stochasticity of intracellular signal transduction but rather to preexisting established heterogeneous states of promoter DNA methylation that were generationally conserved through mitosis. Variability in DNA methylation of the VCAM1 promoter resulted in graded RelA/p65 and RNA polymerase II binding that gave rise to a distribution of VCAM1 transcription in the population after TNF-α stimulation. Microarray analysis and single-cell RNA sequencing revealed that a number of cytokine-inducible genes shared this heterogeneous response pattern. These results show that heritable epigenetic heterogeneity is fundamental in inflammatory signaling and highlight VCAM1 as a metastable epiallele.


Assuntos
Epigênese Genética/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Regiões Promotoras Genéticas/imunologia , RNA Polimerase II/genética , RNA Polimerase II/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
3.
Proc Natl Acad Sci U S A ; 115(10): 2401-2406, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467285

RESUMO

Endothelial cell (EC)-enriched protein coding genes, such as endothelial nitric oxide synthase (eNOS), define quintessential EC-specific physiologic functions. It is not clear whether long noncoding RNAs (lncRNAs) also define cardiovascular cell type-specific phenotypes, especially in the vascular endothelium. Here, we report the existence of a set of EC-enriched lncRNAs and define a role for spliced-transcript endothelial-enriched lncRNA (STEEL) in angiogenic potential, macrovascular/microvascular identity, and shear stress responsiveness. STEEL is expressed from the terminus of the HOXD locus and is transcribed antisense to HOXD transcription factors. STEEL RNA increases the number and integrity of de novo perfused microvessels in an in vivo model and augments angiogenesis in vitro. The STEEL RNA is polyadenylated, nuclear enriched, and has microvascular predominance. Functionally, STEEL regulates a number of genes in diverse ECs. Of interest, STEEL up-regulates both eNOS and the transcription factor Kruppel-like factor 2 (KLF2), and is subject to feedback inhibition by both eNOS and shear-augmented KLF2. Mechanistically, STEEL up-regulation of eNOS and KLF2 is transcriptionally mediated, in part, via interaction of chromatin-associated STEEL with the poly-ADP ribosylase, PARP1. For instance, STEEL recruits PARP1 to the KLF2 promoter. This work identifies a role for EC-enriched lncRNAs in the phenotypic adaptation of ECs to both body position and hemodynamic forces and establishes a newer role for lncRNAs in the transcriptional regulation of EC identity.


Assuntos
Cromatina/metabolismo , Células Endoteliais , Neovascularização Fisiológica , RNA Longo não Codificante , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Hemodinâmica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos SCID , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Trends Biochem Sci ; 41(10): 821-823, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283511

RESUMO

The eukaryotic translation initiation factor 4F (eIF4F) has become essentially synonymous with 5' cap-dependent mRNA translation. Recent studies demonstrate that cells assemble variants of eIF4F to produce adaptive, cap-dependent translatomes during physiological conditions that inhibit eIF4F. These findings challenge us to reassess classical perceptions of cellular translational pathways.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Schizosaccharomyces/genética , Trypanosomatina/genética , Animais , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Trypanosomatina/metabolismo
5.
J Biol Chem ; 293(12): 4381-4402, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29414790

RESUMO

Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.


Assuntos
Cromatina/química , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/química , Peixe-Zebra/metabolismo , Acetilação , Animais , Células Cultivadas , Cromatina/metabolismo , Endotélio Vascular/citologia , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
6.
Proc Natl Acad Sci U S A ; 108(42): 17544-9, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21976486

RESUMO

Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.


Assuntos
Anemia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Adaptação Fisiológica , Anemia/genética , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Débito Cardíaco , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/genética , Oxigênio/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Resistência Vascular , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
7.
J Biol Chem ; 287(34): 29003-20, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22745131

RESUMO

The processes by which cells sense and respond to ambient oxygen concentration are fundamental to cell survival and function, and they commonly target gene regulatory events. To date, however, little is known about the link between the microRNA pathway and hypoxia signaling. Here, we show in vitro and in vivo that chronic hypoxia impairs Dicer (DICER1) expression and activity, resulting in global consequences on microRNA biogenesis. We show that von Hippel-Lindau-dependent down-regulation of Dicer is key to the expression and function of hypoxia-inducible factor α (HIF-α) subunits. Specifically, we show that EPAS1/HIF-2α is regulated by the Dicer-dependent microRNA miR-185, which is down-regulated by hypoxia. Full expression of hypoxia-responsive/HIF target genes in chronic hypoxia (e.g. VEGFA, FLT1/VEGFR1, KDR/VEGFR2, BNIP3L, and SLC2A1/GLUT1), the function of which is to regulate various adaptive responses to compromised oxygen availability, is also dependent on hypoxia-mediated down-regulation of Dicer function and changes in post-transcriptional gene regulation. Therefore, functional deficiency of Dicer in chronic hypoxia is relevant to both HIF-α isoforms and hypoxia-responsive/HIF target genes, especially in the vascular endothelium. These findings have relevance to emerging therapies given that we show that the efficacy of RNA interference under chronic hypoxia, but not normal oxygen availability, is Dicer-dependent. Collectively, these findings show that the down-regulation of Dicer under chronic hypoxia is an adaptive mechanism that serves to maintain the cellular hypoxic response through HIF-α- and microRNA-dependent mechanisms, thereby providing an essential mechanistic insight into the oxygen-dependent microRNA regulatory pathway.


Assuntos
Adaptação Fisiológica/fisiologia , RNA Helicases DEAD-box/biossíntese , Endotélio Vascular/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Oxigênio/metabolismo , Ribonuclease III/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular , RNA Helicases DEAD-box/genética , Endotélio Vascular/citologia , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 1/genética , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Ribonuclease III/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
8.
STAR Protoc ; 3(4): 101919, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595908

RESUMO

Here, we present a protocol using MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) platform to investigate changes of the protein synthesis machinery in U87MG glioblastoma cells in response to the rocaglate silvestrol. This protocol describes steps to perform SILAC (stable isotope labeling by amino acids in cell culture), ribosome density fractionation, protein isolation, and mass spectrometry analysis. This approach can be applied to study any adaptive remodeling of protein synthesis machineries. For complete details on the use and execution of this protocol, please refer to Ho et al. (2021).1.


Assuntos
Glioblastoma , Humanos , Proteômica/métodos , Proteínas/química , Aminoácidos/metabolismo , Espectrometria de Massas/métodos
9.
J Biol Chem ; 285(2): 810-26, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19880524

RESUMO

Hypoxia elicits endothelial dysfunction, in part, through reduced expression of endothelial nitric-oxide synthase (eNOS). Here we present evidence that hypoxia causes a rapid decrease in the transcription of the eNOS/NOS3 gene, accompanied by decreased acetylation and lysine 4 (histone H3) methylation of eNOS proximal promoter histones. Surprisingly, we demonstrate that histones are rapidly evicted from the eNOS proximal promoter during hypoxia. We also demonstrate endothelium-specific H2A.Z incorporation at the eNOS promoter and find that H2A.Z is also evicted by hypoxic stimulation. After longer durations of hypoxia, histones are reincorporated at the eNOS promoter, but these histones lack substantial histone acetylation. Additionally, we identify a key role for the chromatin remodeler, BRG1, in re-establishing eNOS expression following reoxygenation of hypoxic cells. We posit that post-translational histone modifications are required to maintain constitutive eNOS transcriptional activity and that histone eviction rapidly resets histone marks and is a proximal event in the hypoxic repression of eNOS. Although nucleosome eviction has been reported in models of transcriptional activation, the observation that eviction can also accompany transcriptional repression in hypoxic mammalian cells argues that eviction may be broadly relevant to both positive and negative changes in transcription.


Assuntos
Células Endoteliais/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Histonas/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Regiões Promotoras Genéticas/fisiologia , Transcrição Gênica/fisiologia , Acetilação , Hipóxia Celular/fisiologia , Células Cultivadas , DNA Helicases/metabolismo , Células Endoteliais/citologia , Humanos , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 285(13): 9452-9461, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20118244

RESUMO

Heme oxygenases (HOs) -1 and -2 catalyze the breakdown of heme to release carbon monoxide, biliverdin, and ferrous iron, which may preserve cell function during oxidative stress. HO-1 levels decrease in endothelial cells exposed to hypoxia, whereas the effect of hypoxia on HO-2 expression is unknown. The current study was carried out to determine if hypoxia alters HO-2 protein levels in human endothelial cells and whether this enzyme plays a role in preserving their viability during hypoxic stress. Human umbilical vein endothelial cells (HUVECs), human aortic endothelial cells (HAECs), and human blood outgrowth endothelial cells were exposed to 21% or 1% O(2) for 48 or 16 h in the presence or absence of tumor necrosis factor-alpha (10 ng/ml) or H(2)O(2) (100 microm). In all three endothelial cell types HO-1 mRNA and protein levels were decreased following hypoxic incubation, whereas HO-2 protein levels were unaltered. In HUVECs HO-2 levels were maintained during hypoxia despite a 57% reduction in steady-state HO-2 mRNA level and a 43% reduction in total protein synthesis. Polysome profiling revealed increased HO-2 transcript association with polysomes during hypoxia consistent with enhanced translation of these transcripts. Importantly, inhibition of HO-2 expression by small interference RNA increased oxidative stress, exacerbated mitochondrial membrane depolarization, and enhanced caspase activation and apoptotic cell death in cells incubated under hypoxic but not normoxic conditions. These data indicate that HO-2 is important in maintaining endothelial viability and may preserve local regulation of vascular tone, thrombosis, and inflammatory responses during reductions in systemic oxygen delivery.


Assuntos
Células Endoteliais/enzimologia , Heme Oxigenase (Desciclizante)/metabolismo , Hipóxia , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Humanos , Peróxido de Hidrogênio/química , Inflamação , Potenciais da Membrana , Membranas Mitocondriais/metabolismo , Estresse Oxidativo , Interferência de RNA , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
11.
Wiley Interdiscip Rev RNA ; 12(5): e1647, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33694288

RESUMO

Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Assuntos
RNA Longo não Codificante , Proteínas de Ligação a RNA , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Cell Rep ; 37(2): 109806, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644561

RESUMO

Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple "translational inhibition" as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical "translation inhibitors" is mediated by comprehensive translational landscape remodeling.


Assuntos
Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Animais , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Fator de Iniciação 4A em Eucariotos/efeitos dos fármacos , Fator de Iniciação 4A em Eucariotos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Cultura Primária de Células , Biossíntese de Proteínas/fisiologia , Proteômica/métodos , Ribossomos/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Triterpenos/farmacologia
13.
Cell Rep ; 37(13): 110144, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965440

RESUMO

Kaposi's sarcoma herpesvirus (KSHV) is an angiogenesis-inducing oncovirus whose ability to usurp the oxygen-sensing machinery is central to its oncogenicity. By upregulating the hypoxia-inducible factors (HIFs), KSHV reprograms infected cells to a hypoxia-like state, triggering angiogenesis. Here we identify a link between KSHV replicative biology and oncogenicity by showing that KSHV's ability to regulate HIF2α levels and localization to the endoplasmic reticulum (ER) in normoxia enables translation of viral lytic mRNAs through the HIF2α-regulated eIF4E2 translation-initiation complex. This mechanism of translation in infected cells is critical for lytic protein synthesis and contributes to KSHV-induced PDGFRA activation and VEGF secretion. Thus, KSHV regulation of the oxygen-sensing machinery allows virally infected cells to initiate translation via the mTOR-dependent eIF4E1 or the HIF2α-dependent, mTOR-independent, eIF4E2. This "translation initiation plasticity" (TRIP) is an oncoviral strategy used to optimize viral protein expression that links molecular strategies of viral replication to angiogenicity and oncogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinogênese/patologia , Herpesvirus Humano 8/fisiologia , Hipóxia/fisiopatologia , Iniciação Traducional da Cadeia Peptídica , Sarcoma de Kaposi/patologia , Replicação Viral , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia , Ativação Viral
14.
Nat Commun ; 11(1): 2677, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472050

RESUMO

Protein expression evolves under greater evolutionary constraint than mRNA levels, and translation efficiency represents a primary determinant of protein levels during stimuli adaptation. This raises the question as to the translatome remodelers that titrate protein output from mRNA populations. Here, we uncover a network of RNA-binding proteins (RBPs) that enhances the translation efficiency of glycolytic proteins in cells responding to oxygen deprivation. A system-wide proteomic survey of translational engagement identifies a family of oxygen-regulated RBPs that functions as a switch of glycolytic intensity. Tandem mass tag-pulse SILAC (TMT-pSILAC) and RNA sequencing reveals that each RBP controls a unique but overlapping portfolio of hypoxic responsive proteins. These RBPs collaborate with the hypoxic protein synthesis apparatus, operating as a translation efficiency checkpoint that integrates upstream mRNA signals to activate anaerobic metabolism. This system allows anoxia-resistant animals and mammalian cells to initiate anaerobic glycolysis and survive hypoxia. We suggest that an oxygen-sensitive RBP cluster controls anaerobic metabolism to confer hypoxia tolerance.


Assuntos
Anaerobiose/fisiologia , Hipóxia Celular/fisiologia , Glicólise/fisiologia , Proteínas de Ligação a RNA/metabolismo , Células 3T3 , Células A549 , Animais , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Oxigênio/metabolismo , Células PC-3 , Biossíntese de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional/genética , Proteômica , RNA Mensageiro/genética
15.
Nat Commun ; 11(1): 5755, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188200

RESUMO

Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.


Assuntos
Dano ao DNA , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Acidose/metabolismo , Acidose/patologia , Transporte Ativo do Núcleo Celular , Trifosfato de Adenosina/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteômica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Transcrição Gênica , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
16.
Cell Rep ; 22(1): 17-26, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298419

RESUMO

The eukaryotic translation initiation factor 5B (eIF5B) is a homolog of IF2, an ancient translation factor that enables initiator methionine-tRNAiMet (met-tRNAiMet) loading on prokaryotic ribosomes. While it can be traced back to the last universal common ancestor, eIF5B is curiously dispensable in modern aerobic yeast and mammalian cells. Here, we show that eIF5B is an essential element of the cellular hypoxic cap-dependent protein synthesis machinery. System-wide interrogation of dynamic translation machineries by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) demonstrated augmented eIF5B activity in hypoxic translating ribosomes. Global translatome studies revealed central carbon metabolism, cellular hypoxic adaptation, and ATF4-mediated stress response as major eIF5B-dependent pathways. These primordial processes rely on eIF5B even in the presence of oxygen and active eIF2, the canonical recruiter of met-tRNAiMet in eukaryotes. We suggest that aerobic eukarya retained eIF5B/IF2 to remodel anaerobic pathways during episodes of oxygen deficiency.


Assuntos
Carbono/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Oxigênio/metabolismo , Biossíntese de Proteínas , Células A549 , Fator 4 Ativador da Transcrição/metabolismo , Aerobiose , Hipóxia Celular , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Células MCF-7
17.
Cell Rep ; 24(7): 1713-1721.e4, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110628

RESUMO

Amyloid bodies (A-bodies) are inducible membrane-less nuclear compartments composed of heterogeneous proteins that adopt an amyloid-like state. A-bodies are seeded by noncoding RNA derived from stimuli-specific loci of the rDNA intergenic spacer (rIGSRNA). This raises the question of how rIGSRNA recruits a large population of diverse proteins to confer A-body identity. Here, we show that long low-complexity dinucleotide repeats operate as the architectural determinants of rIGSRNA. On stimulus, clusters of rIGSRNA with simple cytosine/uracil (CU) or adenosine/guanine (AG) repeats spanning hundreds of nucleotides accumulate in the nucleolar area. The low-complexity sequences facilitate charge-based interactions with short cationic peptides to produce multiple nucleolar liquid-like foci. Local concentration of proteins with fibrillation propensity in these nucleolar foci induces the formation of an amyloidogenic liquid phase that seeds A-bodies. These results demonstrate the physiological importance of low-complexity RNA and repetitive regions of the genome often dismissed as "junk" DNA.


Assuntos
Proteínas Amiloidogênicas/química , Nucléolo Celular/genética , DNA Intergênico/química , DNA Ribossômico/química , RNA Ribossômico/química , RNA não Traduzido/química , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Sequência de Bases , Hipóxia Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , DNA Intergênico/genética , DNA Intergênico/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Repetições de Dinucleotídeos , Expressão Gênica , Resposta ao Choque Térmico , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Transição de Fase , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Estresse Fisiológico , Imagem com Lapso de Tempo
19.
Cell Rep ; 14(6): 1293-1300, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26854219

RESUMO

Protein concentrations evolve under greater evolutionary constraint than mRNA levels. Translation efficiency of mRNA represents the chief determinant of basal protein concentrations. This raises a fundamental question of how mRNA and protein levels are coordinated in dynamic systems responding to physiological stimuli. This report examines the contributions of mRNA abundance and translation efficiency to protein output in cells responding to oxygen stimulus. We show that changes in translation efficiencies, and not mRNA levels, represent the major mechanism governing cellular responses to [O2] perturbations. Two distinct cap-dependent protein synthesis machineries select mRNAs for translation: the normoxic eIF4F and the hypoxic eIF4F(H). O2-dependent remodeling of translation efficiencies enables cells to produce adaptive translatomes from preexisting mRNA pools. Differences in mRNA expression observed under different [O2] are likely neutral, given that they occur during evolution. We propose that mRNAs contain translation efficiency determinants for their triage by the translation apparatus on [O2] stimulus.


Assuntos
Fator de Iniciação 4F em Eucariotos/genética , Oxigênio/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , Hipóxia Celular , Linhagem Celular Tumoral , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Evolução Molecular , Humanos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , RNA Mensageiro/metabolismo
20.
Dev Cell ; 39(2): 155-168, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27720612

RESUMO

The amyloid state of protein organization is typically associated with debilitating human neuropathies and is seldom observed in physiology. Here, we uncover a systemic program that leverages the amyloidogenic propensity of proteins to regulate cell adaptation to stressors. On stimulus, cells assemble the amyloid bodies (A-bodies), nuclear foci containing heterogeneous proteins with amyloid-like biophysical properties. A discrete peptidic sequence, termed the amyloid-converting motif (ACM), is capable of targeting proteins to the A-bodies by interacting with ribosomal intergenic noncoding RNA (rIGSRNA). The pathological ß-amyloid peptide, involved in Alzheimer's disease, displays ACM-like activity and undergoes stimuli-mediated amyloidogenesis in vivo. Upon signal termination, elements of the heat-shock chaperone pathway disaggregate the A-bodies. Physiological amyloidogenesis enables cells to store large quantities of proteins and enter a dormant state in response to stressors. We suggest that cells have evolved a post-translational pathway that rapidly and reversibly converts native-fold proteins to an amyloid-like solid phase.


Assuntos
Adaptação Fisiológica , Amiloide/metabolismo , Estresse Fisiológico , Motivos de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Animais , Fenômenos Biofísicos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Feminino , Resposta ao Choque Térmico , Humanos , Células MCF-7 , Camundongos Nus , Chaperonas Moleculares/metabolismo , RNA não Traduzido/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA