Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (151)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31589205

RESUMO

To measure [Ca2+] quantitatively, fura-2 analogs, which are ratiometric fluoroprobes, are frequently used. However, dye usage is intrinsically limited in live cells because of autofluorescence interference, mainly from nicotinamide adenine dinucleotide (NADH). More specifically, this is a major obstacle when measuring the mitochondrial [Ca2+] quantitatively using fura-2 analogs because the majority of NADH is in the mitochondria. If the fluorescent dye concentration is the same, a certain excitation intensity should produce the same emission intensity. Therefore, the emission intensity ratio of two different excitation wavelengths should be constant. Based on this principle, a novel online correction method of NADH signal interference to measure [Ca2+] was developed, and the real signal intensity of NADH and fura-2 can be obtained. Further, a novel equation to calculate [Ca2+] was developed with isosbestic excitation or excitation at 400 nm. With this method, changes in mitochondrial [Ca2+] could be successfully measured. In addition, with a different set of the excitation and emission wavelengths, multiple parameters, including NADH, [Ca2+], and pH or mitochondrial membrane potential (Ψm), could be simultaneously measured. Mitochondrial [Ca2+] and Ψm or pH were measured using fura-2-FF and tetramethylrhodamine ethyl ester (TMRE) or carboxy-seminaphtorhodafluor-1 (carboxy-SNARF-1).


Assuntos
Cálcio/análise , Fura-2 , NAD/análise , Benzopiranos , Citoplasma , Corantes Fluorescentes , Mitocôndrias/metabolismo , Naftóis , Rodaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA