Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2310894, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431943

RESUMO

A visible-light-driven CO2 reduction optical fiber is fabricated using graphene-like nitrogen-doped composites and hollow quartz optical fibers to achieve enhanced activity, selectivity, and light utilization for CO2 photoreduction. The composites are synthesized from a lead-based metal-organic framework (TMOF-10-NH2 ) and g-C3 N4 nanosheet (CNNS) via electrostatic self-assembly. The TMOF-10-NH2 /g-C3 N4 (TMOF/CNNS) photocatalyst with an S-type heterojunction is coated on optical fiber. The TMOF/CNNS coating, which has a bandgap energy of 2.15 eV, has good photoinduced capability at the coating interfaces, high photogenerated electron-hole pair yield, and high charge transfer rate. The conduction band potential of the TMOF/CNNS coating is more negative than that for CO2 reduction. Moreover, TMOF facilitates the CO desorption on its surface, thereby improving the selectivity for CO production. High CO2 photoreduction and selectivity for CO production is demonstrated by the TMOF/CNNS-coated optical fiber with the cladding/core diameter of 2000/1000 µm, 10 wt% TMOF in CNNS, coating thickness of 25 µm, initial CO2 concentration of 90 vol%, and relative humidity of 88% RH under the excitation wavelength of 380-780 nm. Overall, the photocatalytic hollow optical fiber developed herein provides an effective and efficient approach for the enhancement of light utilization efficiency of photocatalysts and selective CO2 reduction.

2.
Small ; : e2401796, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966879

RESUMO

As a novel type of catalytic material, hollow nanoreactors are expected to bring new development opportunities in the field of persulfate-based advanced oxidation processes due to their peculiar void-confinement, spatial compartmentation, and size-sieving effects. For such materials, however, further clarification on basic concepts and construction strategies, as well as a discussion of the inherent correlation between structure and catalytic activity are still required. In this context, this review aims to provide a state-of-the-art overview of hollow nanoreactors for activating persulfate. Initially, hollow nanoreactors are classified according to the constituent components of the shell structure and their dimensionality. Subsequently, the different construction strategies of hollow nanoreactors are described in detail, while common synthesis methods for these construction strategies are outlined. Furthermore, the most representative advantages of hollow nanoreactors are summarized, and their intrinsic connections to the nanoreactor structure are elucidated. Finally, the challenges and future prospects of hollow nanoreactors are presented.

3.
Environ Sci Technol ; 58(4): 1921-1933, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38233045

RESUMO

Aeration accounts for 35-51% of the overall energy consumption in wastewater treatment processes and results in an annual energy consumption of 5-7.5 billion kWh. Herein, a solar-powered continuous-flow device was designed for aeration-free in situ Fenton-like reactions to treat wastewater. This system is based on the combination of TiO2-x/W18O49 featuring heterophase oxygen vacancy interactions with floating reduced graphene/polyurethane foam, which produces hydrogen peroxide in situ at the rates of up to 4.2 ppm h-1 with degradation rates of more than 90% for various antibiotics. The heterophase oxygen vacancies play an important role in the stretching of the O-O bond by regulating the d-band center of TiO2-x/W18O49, promoting the hydrogenation of *·O2- or *OOH by H+ enrichment, and accelerating the production of reactive oxygen species by spontaneous adsorption of hydrogen peroxide. Furthermore, the degradation mechanisms of antibiotics and the treatment of actual wastewater were thoroughly investigated. In short, the study provides a meaningful reference for potentially undertaking the "aeration-free" in situ Fenton reaction, which can help reduce or even completely eradicate the aeration costs and energy requirements during the treatment of wastewater.


Assuntos
Ferro , Oxigênio , Ferro/química , Águas Residuárias , Peróxido de Hidrogênio/química , Adsorção , Antibacterianos , Oxirredução
4.
Environ Res ; 257: 119326, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849002

RESUMO

With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.

5.
Environ Sci Technol ; 57(9): 4050-4059, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802506

RESUMO

Converting biomass into biochar (BC) as a functional biocatalyst to accelerate persulfate activation for water remediation has attracted much attention. However, due to the complex structure of BC and the difficulty in identifying the intrinsic active sites, it is essential to understand the link between various properties of BC and the corresponding mechanisms promoting nonradicals. Machine learning (ML) recently demonstrated significant potential for material design and property enhancement to help tackle this problem. Herein, ML techniques were applied to guide the rational design of BC for the targeted acceleration of nonradical pathways. The results showed a high specific surface area, and O% values can significantly enhance nonradical contribution. Furthermore, the two features can be regulated by simultaneously tuning the temperatures and biomass precursors for efficient directed nonradical degradation. Finally, two nonradical-enhanced BCs with different active sites were prepared based on the ML results. This work serves as a proof of concept for applying ML in the synthesis of tailored BC for persulfate activation, thereby revealing the remarkable capability of ML for accelerating bio-based catalyst development.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Oxirredução , Carvão Vegetal/química , Catálise , Temperatura , Poluentes Químicos da Água/análise
6.
Environ Res ; 237(Pt 2): 116959, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619628

RESUMO

Biochar is widely used to remove organic pollutants from the environment. Several studies have focused on pollutant removal via biochar adsorption. However, research on the subsequent processing of pollutant-adsorbed biochar is lacking. This study explored the potential of biochar for the adsorption of an aquatic organic pollutant (tetracycline) and its subsequent use as a solid biofuel. These results suggest that corn straw-derived biochar (torrefaction and pyrolysis) is suitable for two-stage utilization to achieve bioresource valorization for environmental sustainability. Tetracycline-adsorbed biochar, particularly biochar pyrolyzed at 600 °C, is suitable for use as a biofuel. The biochar produced via torrefaction (300 °C) and pyrolysis (600 °C) is the optimal choice, with surface area, contact angle, graphitization degree, calorific value, enhancement factor, and upgrading energy index values of 172.48 m2/g, 120.4°, 3.87, 26.983 MJ/kg, 1.58, and 33.72, respectively. This is supported by the results of expense calculation, comprehensive performance analysis, and life-cycle assessment. Overall, the biochar produced in this study is suitable for organic pollutant removal and as solid biofuel; thus, it can be used to realize waste utilization for environmental sustainability.

7.
Environ Res ; 219: 115132, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563979

RESUMO

Soil plays a vital role as a nutrient source for microflora and plants in ecosystems. The accumulation and proliferation of antibiotics resistance bacteria (ARB) and antibiotics resistance genes (ARGs) causes emerging soil contamination and pollution, posing new challenges for soil remediation, recovery, and conservation. Fertilizer application in agriculture is one of the most important sources of ARB and ARGs contamination in soils. The recent existing techniques for the remediation of soil polluted with ARB and ARGs are very limited in terms of ARB and ARGs removal in soil. Bioelectrochemical remediation using bioelectrochemical systems such as microbial fuel cells and microbial electrolysis cells are promising technologies for the removal of ARB and ARGs in soil. Herein, diverse sources of ARB and ARGs in soil have been reviewed, their effects on soil microbial diversity have been analyzed, and the causes of ARB and ARGs rapid proliferation in soil are explained. Bioelectrochemical systems used for the remediation of soil contaminated with ARB and ARGs is still in its infancy stage and presents serious disadvantage and limits, therefore it needs to be well understood and implemented. In general, merging soil contamination of ARB and ARGs is an increasing concern threatening the soil ecosystem while the remediation technologies are still challenging. Efforts need to be made to develop new, effective, and efficient technologies for soil remediation and conservation to tackle the spread of ARB and ARGs and overcome the new challenges posed by ARB and ARGs contamination in soil.


Assuntos
Antibacterianos , Solo , Antibacterianos/farmacologia , Genes Bacterianos , Bactérias/genética , Ecossistema , Antagonistas de Receptores de Angiotensina/farmacologia , Resistência Microbiana a Medicamentos/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Microbiologia do Solo
8.
Environ Res ; 227: 115730, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958384

RESUMO

Due to anthropogenic emissions, there is an increase in the concentration of carbon dioxide (CO2) in the atmosphere. Microalgae are versatile, universal, and photosynthetic microorganisms present in nature. Biological CO2 sequestration using microalgae is a novel concept in CO2 mitigation strategies. In the current review, the difference between carbon capture and storage (CCS), carbon capture utilization and storage (CCUS), and carbon capture and utilization (CCU) is clarified. The current status of CO2 sequestration techniques is discussed, including various methods and a comparative analysis of abiotic and biotic sequestration. Particular focus is given to sequestration methods associated with microalgae, including advantages of CO2 bio-sequestration using microalgae, a summary of microalgae species that tolerate high CO2 concentrations, biochemistry of microalgal CO2 biofixation, and elements influencing the microalgal CO2 sequestration. In addition, this review highlights and summarizes the research efforts made on the production of various biofuels using microalgae. Notably, Chlorella sp. is found to be the most beneficial microalgae, with a sizeable hydrogen (H2) generation capability ranging from 6.1 to 31.2 mL H2/g microalgae, as well as the species of C. salina, C. fusca, Parachlorella kessleri, C. homosphaera, C. vacuolate, C. pyrenoidosa, C. sorokiniana, C. lewinii, and C. protothecoides. Lastly, the technical feasibility and life cycle analysis are analyzed. This comprehensive review will pave the way for promoting more aggressive research on microalgae-based CO2 sequestration.


Assuntos
Chlorella , Microalgas , Animais , Dióxido de Carbono/análise , Biocombustíveis , Estágios do Ciclo de Vida , Biomassa
9.
Environ Res ; 237(Pt 2): 116974, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625537

RESUMO

The wide use of antibiotics in aquaculture has triggered global ecological security issue. Microalgal bioremediation is a promising strategy for antibiotics elimination due to carbon recovery, detoxification and various ecological advantages. However, a lack of understanding with respect to the corresponding regulation mechanism towards antibiotic stress may limit its practical applicability. The microalga Scenedesmus obliquus was shown to be capable of effectively eliminating ciprofloxacin (CIP), which is a common antibiotic used in aquaculture. However, the corresponding transcriptional alterations require further investigation and verification at the metabolomic level. Thus, this study uncovered the metabolomic profiles and detailed toxic and defense mechanisms towards CIP in S. obliquus using untargeted metabolomics. The enhanced oligosaccharide/polyol/lipid transport, up-regulation of carbohydrate and arachidonic acid metabolic pathways and increased energy production via EMP metabolism were observed as defense mechanisms of microalgal cells to xenobiotic CIP. The toxic metabolic responses included: (1) down-regulation of parts of mineral and organic transporters; (2) electrons competition between antibiotic and NAD during intracellular CIP degradation; and (3) suppressed expression of the hem gene in chlorophyll biosynthesis. This study describes the metabolic profile of microalgae during CIP elimination and reveals the key pathways from the perspective of metabolism, thereby providing information on the precise regulation of antibiotic bioremediation via microalgae.

10.
Mar Drugs ; 21(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37504949

RESUMO

Lutein is a high-value carotenoid with many human health benefits. Lycopene ß- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key enzymes in lutein biosynthesis. In this study, the coding genes of two lycopene cyclases (CsLCYB and CsLCYE) of a lutein-enriched marine green microalga, Chlorella sorokiniana FZU60, were isolated and identified. A sequence analysis and computational modeling of CsLCYB and CsLCYE were performed using bioinformatics to identify the key structural domains. Further, a phylogenetic analysis revealed that CsLCYB and CsLCYE were homogeneous to the proteins of other green microalgae. Subcellular localization tests in Nicotiana benthamiana showed that CsLCYB and CsLCYE localized in chloroplasts. A pigment complementation assay in Escherichia coli revealed that CsLCYB could efficiently ß-cyclize both ends of lycopene to produce ß-carotene. On the other hand, CsLCYE possessed a strong ε-monocyclase activity for the production of δ-carotene and a weak ε-bicyclic activity for the production of ε-carotene. In addition, CsLCYE was able to catalyze lycopene into ß-monocyclic γ-carotene and ultimately produced α-carotene with a ß-ring and an ε-ring via γ-carotene or δ-carotene. Moreover, the co-expression of CsLCYB and CsLCYE in E. coli revealed that α-carotene was a major product, which might lead to the production of a high level of lutein in C. sorokiniana FZU60. The findings provide a theoretical foundation for performing metabolic engineering to improve lutein biosynthesis and accumulation in C. sorokiniana FZU60.


Assuntos
Chlorella , Liases Intramoleculares , Microalgas , Humanos , Licopeno/metabolismo , Luteína/metabolismo , Chlorella/genética , Chlorella/metabolismo , Microalgas/genética , Microalgas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Carotenoides/metabolismo , beta Caroteno/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo
11.
Environ Res ; 210: 112965, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35218712

RESUMO

Converting microalgal biomass residues into biochar (BC) after microalgal wastewater treatment is a popular approach that can produce an adsorbent to treat refractory organic pollutants. Moreover, the adsorption efficiency via BC is closely associated with the surface morphology, which may be determined by the composition of the microalgal biomass. However, the intrinsic relationship and advanced mechanism between the adsorption efficiency and microalgal composition have not been thoroughly investigated. In this work, four microalgal BCs were prepared from Chlamydomonas sp. QWY37 (CBC) after collection from four different growth stages of microalgal biomass during wastewater treatment. The adsorption performance for sulfamethoxazole indicates that the CBC collected in the mid-log phase (CBCL-M) possessed the best adsorption capacity (287.89 mg/g) owing to the higher decomposition of the microalgal cellular protein concentration (70%). Meanwhile, a higher protein content contributed to the largest specific surface area (42.16 m2/g), maximum pore volume (0.037 cm3/g) and abundant surface functional groups of the CBCL-M. Furthermore, based on the theoretical calculation of the structural analysis, the adsorption mechanism was a multilayer adsorption process in accordance with the Freundlich isotherm. Additionally, the strong hydrogen bond, electron donor-acceptor interaction and electrostatic attraction were the main adsorption mechanisms due to the carboxyl/ester functional groups. The results of this research provide a novel perspective on the reasonable harvest of microalgal biomass for BC fabrication and large-scale implementation of microalgal BC in future applications.


Assuntos
Microalgas , Poluentes Químicos da Água , Adsorção , Biomassa , Carvão Vegetal , Sulfametoxazol , Poluentes Químicos da Água/análise
12.
Environ Res ; 212(Pt C): 113389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35561822

RESUMO

Oxidative torrefaction is a promising way for biomass upgrading and solid biofuel production. Alkali metals are considered to be efficient activators for enhancing biofuel upgrading during the thermal reaction process. Herein, the microalga Nannochloropsis Oceanica is selected as the feedstock for assessing potassium carbonate activated effect on solid biofuel production through oxidative torrefaction. The potential of potassium carbonate on microalgal biofuel properties upgrading is deeply explored. SEM observation and BET analysis show that torrefied microalgae can be transformed from a spherical structure with wrinkles to smaller particles with larger surface areas and higher total pore volumes, implying that potassium carbonate is a promising porogen. Moreover, potassium carbonate can significantly change the DTG curve at the temperatures of 250 °C and 300 °C from one peak to two peaks, inferring that the activated effect of potassium carbonate occurs on the torrefied microalgae. 13C NMR analysis reveals that the microalgal components significantly change as the torrefaction severity increases, with the decomposition of carbohydrate and protein components. When the potassium carbonate ratio increases from 0:1 to 1:1, the graphitization degree increase from 3.065 to 1.262, along with the increase in the HHV of solid biofuel from 25.024 MJ kg-1 to 31.890 MJ kg-1. In total, this study has comprehensively revealed the activated effect of potassium carbonate on improving the properties of microalgal solid biofuel.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Carbonatos , Microalgas/metabolismo , Estresse Oxidativo , Potássio , Temperatura
13.
Environ Res ; 204(Pt A): 111966, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34450156

RESUMO

Microalgae are drawing attentions among researchers for their biorefinery use or value-added products. The high production rate of biomasses produced are attractive for conversion into volatile biochar. Torrefaction, pyrolysis and hydrothermal carbonization are the recommended thermochemical conversion techniques that could produce microalgal-based biochar with desirable physiochemical properties such as high surface area and pore volume, abundant surface functional groups, as well as functionality such as high adsorption capacity. The characterizations of the biochar significantly influence the mechanisms in adsorption of pollutants from wastewaters. Specific adsorption of the organic and inorganic pollutants from the effluent are reviewed to examine the adsorption capacity and efficiency of biochar derived from different microalgae species. Last but not least, future remarks over the challenges and improvements are discussed accordingly. Overall, this review would discuss the synthesis, characterization and application of the microalgal-based biochar in wastewater.


Assuntos
Microalgas , Águas Residuárias , Adsorção , Carvão Vegetal
14.
J Cell Mol Med ; 25(4): 1972-1981, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33377602

RESUMO

Melanoma is a very aggressive form of skin cancer. Although BRAF inhibitors have been utilized for melanoma therapy, advanced melanoma patients still face a low five-year survival rate. Recent studies have shown that CRAF can compensate for BRAF depletion via regulating DNA synthesis to remain melanoma proliferation. Hence, targeting CRAF either alone or in combination with other protein pathways is a potential avenue for melanoma therapy. Based on our previously reported CRAF-selective inhibitor for renal cancer therapy, we have herein discovered an analogue (complex 1) from the reported CRAF library suppresses melanoma cell proliferation and melanoma tumour growth in murine models of melanoma via blocking the S100B and RAF pathways. Intriguingly, we discovered that inhibiting BRAF together with S100B exerts a novel synergistic effect to significantly restore p53 transcription activity and inhibit melanoma cell proliferation, whereas blocking BRAF together with CRAF only had an additive effect. We envision that blocking the pan-RAF and S100B/p53 pathways might be a novel synergistic strategy for melanoma therapy and that complex 1 is a potential inhibitor against melanoma via blocking the pan-RAF and S100B pathways.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-raf/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Replicação do DNA , Modelos Animais de Doenças , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/etiologia , Melanoma/patologia , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Environ Res ; 195: 110775, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497681

RESUMO

Sludge dewatering is a matter of great concern to reduce the volume of sludge, stabilize its organic components, and achieve resource utilization. This study investigates sludge dewatering by microwave torrefaction along with the production of sludge solid biofuel at 480-800 W combined with durations of 5-25 min. Proximate analysis, calorific value analysis, thermogravimetric analysis, and scanning electron microscopy observations are employed to evaluate the dewatering degree, fuel properties, and energy efficiency of the torrefaction process. The independent parallel reaction (IPR) model and particle swarm optimization (PSO) analysis are also adopted for sludge pyrolysis kinetics calculation. The results show that microwave torrefaction is efficient for sludge dewatering with a short duration. The produced sludge solid biofuel is similar to stone-like coal, and can be used for civil or industrial boilers after flotation or just co-firing with briquette. The ash content of sludge solid biofuel shows a declining trend and the surface characteristics change from smooth to rough and fluffy with increasing the torrefaction severity. The bio-oil is mainly composed of phenols, siloxanes, and cholesterol. In addition, hydrogen is detected in the torgas. Furthermore, it is found that lower torrefaction power with a shorter duration yields a higher energy efficiency of the torrefaction process.


Assuntos
Biocombustíveis , Esgotos , Biomassa , Micro-Ondas , Temperatura
16.
Bioprocess Biosyst Eng ; 44(7): 1491-1499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710454

RESUMO

The red alga Porphyridium purpureum has been known to produce polyunsaturated fatty acids, especially arachidonic acid (ARA), under stressful conditions. However, there is no consistent conclusion about the response of ARA in this alga to nitrogen (N) stress. Also, no research has been done to clearly elucidate the underlying molecular mechanisms of N stress. In this work, P. purpureum CoE1 was cultivated under nitrogen limitation conditions and the putative Δ5-desaturase related gene FADSD5 was isolated. The results showed that the fatty acids in P. purpureum CoE1 were significantly higher in the N limited cultures (54.3 mg g-1) than in the N-replete cultures (45.3 mg g-1) at the 18th day (t-test, p < 0.001), which was attributed to the upregulated abundance of the putative Δ5-desaturase related protein, Δ5-Des. The study also indicated that the expression of the putative Δ5-desaturase related gene, FADSD5, increased with cell growth, demonstrating considerable potentials for ARA biosynthesis in P. purpureum CoE1. These results might guide the direction in illuminating the biosynthetic pathway of fatty acids with molecular evidence and enable genetic modifications of P. purpureum CoE1 for enhancing the ARA accumulation.


Assuntos
Ácido Araquidônico/química , Nitrogênio/química , Porphyridium/metabolismo , Biomassa , Biotecnologia/métodos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/química , Microbiologia Industrial/métodos , Modelos Lineares , Análise de Componente Principal , Regulação para Cima
17.
J Environ Manage ; 288: 112402, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774564

RESUMO

Membrane is a considerable precursor for emulsions separation and organic dyes degradation used in water purification and oil reclamation. However, the tedious preparation method, the surface smears easily, and low degradation efficiency, these characteristics usually significantly hinder its applicability toward wastewater governance. Herein, a green, facile, and efficient fabrication strategy to prepare a bi-functional palladium nanoparticles (PdNPs)-loaded bacterial cellulose membrane (BCMPd) is proposed. A tri-functional bacterial cellulose membrane (BCM) was obtained by percolating bacterial cellulose (BC) on a basal membrane, and BCM served as a support, reducing agent, and stabilizer in the subsequent reduction of PdNPs. Bi-functional BCMPd was successfully obtained and used for continuously removing emulsions and reducing methylene blue (MB) from simulated wastewater via the integration of physical sieving and chemical reaction. Meanwhile, the enhancement factors for the water transfer ability and demulsification capacity correlated directly with the wettability and surface structure of BCMPd. Furthermore, the dosage of BC was adjusted to reveal the mechanism for the enhanced water transferability and demulsification capacity. Notably, PdNPs of BCMPd decreased Fermi potential difference between BH4- and MB, accelerating the electron transfer of the reduction reaction and thus exhibiting a remarkable MB degradation efficiency. Together, the information obtained in this work can be useful for comprehensively addressing the bottleneck of forming a cost-effective, eco-friendly, and bi-functional membrane reactor, providing an alternative approach for better treatment of complex wastewater.


Assuntos
Nanopartículas Metálicas , Paládio , Celulose , Corantes , Emulsões
18.
J Environ Manage ; 293: 112782, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052610

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.


Assuntos
Chlorella , Microalgas , Poli-Hidroxialcanoatos , Eliminação de Resíduos , Biomassa , Alimentos , Tecnologia , Águas Residuárias
19.
Med Res Rev ; 40(3): 1084-1102, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31709590

RESUMO

To better make nanomedicine entering the clinic, developing new rationally designed nanotherapeutics with a deeper understanding of tumor biology is required. The tumor microenvironment is similar to the inflammatory response in a healing wound, the milieu of which promotes tumor cell invasion and metastasis. Successful targeting of the microenvironmental components with effective nanotherapeutics to modulate the tumor microvessels or restore the homeostatic mechanisms in the tumor stroma will offer new hope for cancer treatment. We here highlight the progress in constructing nanotherapeutics to target or modulate the tumor microenvironment. We discuss the factors necessary for nanomedicines to become a new paradigm in cancer therapy, including the selection of drugs and therapeutic targets, controllable synthesis, and tempo-spatial drug release.


Assuntos
Nanomedicina/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , DNA/química , Sistemas de Liberação de Medicamentos , Matriz Extracelular/metabolismo , Homeostase , Humanos , Oncologia/métodos , Oncologia/tendências , Camundongos , Nanomedicina/tendências , Invasividade Neoplásica , Metástase Neoplásica , Neovascularização Patológica , Permeabilidade , Células Estromais/metabolismo
20.
BMC Genomics ; 21(1): 743, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109102

RESUMO

BACKGROUND: Scenedesmus obliquus belongs to green microalgae and is widely used in aquaculture as feed, which is also explored for lipid production and bioremediation. However, genomic studies of this microalga have been very limited. Cell self-flocculation of microalgal cells can be used as a simple and economic method for harvesting biomass, and it is of great importance to perform genome-scale studies for the self-flocculating S. obliquus strains to promote their biotechnological applications. RESULTS: We employed the Pacific Biosciences sequencing platform for sequencing the genome of the self-flocculating microalga S. obliquus AS-6-11, and used the MECAT software for de novo genome assembly. The estimated genome size of S. obliquus AS-6-11 is 172.3 Mbp with an N50 of 94,410 bp, and 31,964 protein-coding genes were identified. Gene Ontology (GO) and KEGG pathway analyses revealed 65 GO terms and 428 biosynthetic pathways. Comparing to the genome sequences of the well-studied green microalgae Chlamydomonas reinhardtii, Chlorella variabilis, Volvox carteri and Micractinium conductrix, the genome of S. obliquus AS-6-11 encodes more unique proteins, including one gene that encodes D-mannose binding lectin. Genes encoding the glycosylphosphatidylinositol (GPI)-anchored cell wall proteins, and proteins with fasciclin domains that are commonly found in cell wall proteins might be responsible for the self-flocculating phenotype, and were analyzed in detail. Four genes encoding both GPI-anchored cell wall proteins and fasciclin domain proteins are the most interesting targets for further studies. CONCLUSIONS: The genome sequence of the self-flocculating microalgal S. obliquus AS-6-11 was annotated and analyzed. To our best knowledge, this is the first report on the in-depth annotation of the S. obliquus genome, and the results will facilitate functional genomic studies and metabolic engineering of this important microalga. The comparative genomic analysis here also provides new insights into the evolution of green microalgae. Furthermore, identification of the potential genes encoding self-flocculating proteins will benefit studies on the molecular mechanism underlying this phenotype for its better control and biotechnological applications as well.


Assuntos
Chlorella , Microalgas , Scenedesmus , Biomassa , Glicolatos , Microalgas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA