Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Undersea Hyperb Med ; 50(1): 45-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820806

RESUMO

Background: Doppler ultrasound is used currently in decompression research for the evaluation of venous gas emboli (VGE). Estimation of heart rate from post-dive Doppler ultrasound recordings can provide a tool for the evaluation of physiological changes from decompression stress, as well as aid in the development of automated VGE detection algorithms that relate VGE presence to cardiac activity. Method: An algorithm based on short-term autocorrelation was developed in MATLAB to estimate the heart rate in post-dive precordial Doppler ultrasound. The algorithm was evaluated on 21 previously acquired and labeled precordial recordings spanning Kisman-Masurel (KM) codes of 111-444 (KM I-IV) with manually derived instantaneous heart rates. Results: A window size of at least two seconds was necessary for robust and accurate instantaneous heart rate estimation with a mean error of 1.56 ± 7.10 bpm. Larger window sizes improved the algorithm performance, at the cost of beat-to-beat heart rate estimates. We also found that our algorithm provides good results for low KM grade Doppler recordings with and without flexion, and high KM grades without flexion. High KM grades observed after movement produced the greatest mean absolute error of 6.12 ± 8.40 bpm. Conclusion: We have developed a fully automated algorithm for the estimation of heart rate in post-dive precordial Doppler ultrasound recordings.


Assuntos
Doença da Descompressão , Mergulho , Embolia Aérea , Humanos , Frequência Cardíaca , Mergulho/fisiologia , Ultrassonografia Doppler , Algoritmos
2.
IEEE Trans Biomed Eng ; 70(5): 1436-1446, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36301781

RESUMO

OBJECTIVE: Doppler ultrasound (DU) is used to detect venous gas emboli (VGE) post dive as a marker of decompression stress for diving physiology research as well as new decompression procedure validation to minimize decompression sickness risk. In this article, we propose the first deep learning model for VGE grading in DU audio recordings. METHODS: A database of real-world data was assembled and labeled for the purpose of developing the algorithm, totaling 274 recordings comprising both subclavian and precordial measurements. Synthetic data was also generated by acquiring baseline DU signals from human volunteers and superimposing laboratory-acquired DU signals of bubbles flowing in a tissue mimicking material. A novel squeeze-and-excitation deep learning model was designed to effectively classify recordings on the 5-class Spencer scoring system used by trained human raters. RESULTS: On the real-data test set, we show that synthetic data pretraining achieves average ordinal accuracy of 84.9% for precordial and 90.4% for subclavian DU which is a 24.6% and 26.2% increase over training with real-data and time-series augmentation only. The weighted kappa coefficients of agreement between the model and human ground truth were 0.74 and 0.69 for precordial and subclavian respectively, indicating substantial agreement similar to human inter-rater agreement for this type of data. CONCLUSION: The present work demonstrates the first application of deep-learning for DU VGE grading using a combination of synthetic and real-world data. SIGNIFICANCE: The proposed method can contribute to accelerating DU analysis for decompression research.


Assuntos
Doença da Descompressão , Aprendizado Profundo , Embolia Aérea , Humanos , Gravação de Som , Embolia Aérea/diagnóstico por imagem , Ultrassonografia Doppler
3.
PLoS One ; 18(4): e0284922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104279

RESUMO

Doppler ultrasound (DU) measurements are used to detect and evaluate venous gas emboli (VGE) formed after decompression. Automated methodologies for assessing VGE presence using signal processing have been developed on varying real-world datasets of limited size and without ground truth values preventing objective evaluation. We develop and report a method to generate synthetic post-dive data using DU signals collected in both precordium and subclavian vein with varying degrees of bubbling matching field-standard grading metrics. This method is adaptable, modifiable, and reproducible, allowing for researchers to tune the produced dataset for their desired purpose. We provide the baseline Doppler recordings and code required to generate synthetic data for researchers to reproduce our work and improve upon it. We also provide a set of pre-made synthetic post-dive DU data spanning six scenarios representing the Spencer and Kisman-Masurel (KM) grading scales as well as precordial and subclavian DU recordings. By providing a method for synthetic post-dive DU data generation, we aim to improve and accelerate the development of signal processing techniques for VGE analysis in Doppler ultrasound.


Assuntos
Doença da Descompressão , Mergulho , Embolia Aérea , Humanos , Embolia Aérea/prevenção & controle , Ultrassonografia Doppler , Veia Subclávia
4.
Front Physiol ; 13: 907651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755430

RESUMO

Decompression sickness (DCS) can result from the growth of bubbles in tissues and blood during or after a reduction in ambient pressure, for example in scuba divers, compressed air workers or astronauts. In scuba diving research, post-dive bubbles are detectable in the venous circulation using ultrasound. These venous gas emboli (VGE) are a marker of decompression stress, and larger amounts of VGE are associated with an increased probability of DCS. VGE are often observed for hours post-dive and differences in their evolution over time have been reported between individuals, but also for the same individual, undergoing a same controlled exposure. Thus, there is a need for small, portable devices with long battery lives to obtain more ultrasonic data in the field to better assess this inter- and intra-subject variability. We compared two new handheld ultrasound devices against a standard device that is currently used to monitor post-dive VGE in the field. We conclude that neither device is currently an adequate replacement for research studies where precise VGE grading is necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA