Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 61(8): 1794-1803, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29881878

RESUMO

AIMS/HYPOTHESIS: Islet-specific autoantibodies can predict the development of type 1 diabetes. However, it remains unclear if B cells, per se, contribute to the causal pancreatic immunopathology. We aimed to identify phenotypic signatures of disease progression among naive and memory B cell subsets in the peripheral blood of individuals with type 1 diabetes. METHODS: A total of 69 participants were recruited across two separate cohorts, one for discovery purposes and the other for validation purposes. Each cohort comprised two groups of individuals with type 1 diabetes (one with newly diagnosed type 1 diabetes and the other with long-standing type 1 diabetes) and one group of age- and sex-matched healthy donors. The phenotypic characteristics of circulating naive and memory B cells were investigated using polychromatic flow cytometry, and serum concentrations of various chemokines and cytokines were measured using immunoassays. RESULTS: A disease-linked phenotype was detected in individuals with long-standing type 1 diabetes, characterised by reduced C-X-C motif chemokine receptor 3 (CXCR3) expression on switched (CD27+IgD-) and unswitched (CD27intermediateIgD+) memory B cells. These changes were associated with raised serum concentrations of B cell activating factor and of the CXCR3 ligands, chemokine (C-X-C motif) ligand (CXCL)10 and CXCL11. A concomitant reduction in CXCR3 expression was also identified on T cells. CONCLUSIONS/INTERPRETATION: Our data reveal a statistically robust set of abnormalities that indicate an association between type 1 diabetes and long-term dysregulation of a chemokine ligand/receptor system that controls B cell migration.


Assuntos
Linfócitos B/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Receptores CXCR3/metabolismo , Adulto , Quimiocina CXCL11/metabolismo , Quimiocinas/metabolismo , Feminino , Humanos , Antígenos Comuns de Leucócito/metabolismo , Masculino , Linfócitos T , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Adulto Jovem , Receptor fas/metabolismo
2.
Diabetologia ; 61(3): 658-670, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29196783

RESUMO

AIMS/HYPOTHESIS: Validated biomarkers are needed to monitor the effects of immune intervention in individuals with type 1 diabetes. Despite their importance, few options exist for monitoring antigen-specific T cells. Previous reports described a combinatorial approach that enables the simultaneous detection and quantification of multiple islet-specific CD8+ T cell populations. Here, we set out to evaluate the performance of a combinatorial HLA-A2 multimer assay in a multi-centre setting. METHODS: The combinatorial HLA-A2 multimer assay was applied in five participating centres using centralised reagents and blinded replicate samples. In preliminary experiments, samples from healthy donors were analysed using recall antigen multimers. In subsequent experiments, samples from healthy donors and individuals with type 1 diabetes were analysed using beta cell antigen and recall antigen multimers. RESULTS: The combinatorial assay was successfully implemented in each participating centre, with CVs between replicate samples that indicated good reproducibility for viral epitopes (mean %CV = 33.8). For beta cell epitopes, the assay was very effective in a single-centre setting (mean %CV = 18.4), but showed sixfold greater variability across multi-centre replicates (mean %CV = 119). In general, beta cell antigen-specific CD8+ T cells were detected more commonly in individuals with type 1 diabetes than in healthy donors. Furthermore, CD8+ T cells recognising HLA-A2-restricted insulin and glutamate decarboxylase epitopes were found to occur at higher frequencies in individuals with type 1 diabetes than in healthy donors. CONCLUSIONS/INTERPRETATION: Our results suggest that, although combinatorial multimer assays are challenging, they can be implemented in multiple laboratories, providing relevant T cell frequency measurements. Assay reproducibility was notably higher in the single-centre setting, suggesting that biomarker analysis of clinical trial samples would be most successful when assays are performed in a single laboratory. Technical improvements, including further standardisation of cytometry platforms, will likely be necessary to reduce assay variability in the multi-centre setting.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Antígeno HLA-A2/metabolismo , Adulto , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA