Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(43): e2212343119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227945

RESUMO

The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.


Assuntos
Prótons , Protetores Solares , Catecóis , Humanos , Melaninas , Solventes
2.
J Am Chem Soc ; 145(1): 732-744, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538761

RESUMO

Control over the populations of singlet and triplet excitons is key to organic semiconductor technologies. In different contexts, triplets can represent an energy loss pathway that must be managed (i.e., solar cells, light-emitting diodes, and lasers) or provide avenues to improve energy conversion (i.e., photon upconversion and multiplication systems). A key consideration in the interplay of singlet and triplet exciton populations in these systems is the rate of intersystem crossing (ISC). In this work, we design, measure, and model a series of new electron acceptor molecules and analyze them using a combination of ultrafast transient absorption and ultrafast broadband photoluminescence spectroscopies. We demonstrate that intramolecular triplet formation occurs within several hundred picoseconds in solution and is accelerated considerably in the solid state. Importantly, ISC occurs with sufficient rapidity to compete with charge formation in modern organic solar cells, implicating triplets in intrinsic exciton loss channels in addition to charge recombination. Density functional theory calculations reveal that ISC occurs in triplet excited states characterized by local deviations from orbital π-symmetry associated with rotationally flexible thiophene rings. In disordered films, structural distortions, therefore, result in significant increases in spin-orbit coupling, enabling rapid ISC. We demonstrate the generality of this proposal in an oligothiophene model system where ISC is symmetry-forbidden and show that conformational disorder introduced by the formation of a solvent glass accelerates ISC, outweighing the lower temperature and increased viscosity. This proposal sheds light on the factors responsible for facile ISC and provides a simple framework for molecular control over spin states.

3.
Phys Chem Chem Phys ; 25(28): 18990-18997, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37415566

RESUMO

The demand for fluorescent organic dyes across a broad range of applications has led to investigation into tuneable emission dyes. The tuneable nature of these dyes makes them desirable for applications in a variety of fields, including organic light-emitting diodes (OLEDs), optical sensing devices, and fluorescence imaging. In recent investigations, there have only been a handful of mechanisms used to tune emission. Herein, we present four novel perylene-acene dyads that undergo solvent tuneable emission, and propose a novel mechanism for this tuneability based on the presence of a charge transfer state. These dyes were shown to reach photoluminescence quantum efficiencies (PLQEs) as high as 45%, depending on the solvent, showing the ability for this mechanism to be used to access higher PLQE tuneable emission.

4.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212406

RESUMO

Simulations of exciton and charge hopping in amorphous organic materials involve numerous physical parameters. Each of these parameters must be computed from costly ab initio calculations before the simulation can commence, resulting in a significant computational overhead for studying exciton diffusion, especially in large and complex material datasets. While the idea of using machine learning to quickly predict these parameters has been explored previously, typical machine learning models require long training times, which ultimately contribute to simulation overheads. In this paper, we present a new machine learning architecture for building predictive models for intermolecular exciton coupling parameters. Our architecture is designed in such a way that the total training time is reduced compared to ordinary Gaussian process regression or kernel ridge regression models. Based on this architecture, we build a predictive model and use it to estimate the coupling parameters which enter into an exciton hopping simulation in amorphous pentacene. We show that this hopping simulation is able to achieve excellent predictions for exciton diffusion tensor elements and other properties as compared to a simulation using coupling parameters computed entirely from density functional theory. This result, along with the short training times afforded by our architecture, shows how machine learning can be used to reduce the high computational overheads associated with exciton and charge diffusion simulations in amorphous organic materials.

5.
Nano Lett ; 22(1): 58-64, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965360

RESUMO

Two-dimensional (2D) semiconductors are primed to realize a variety of photonic devices that rely on the transient properties of photogenerated charges, yet little is known on the change of the refractive index. The associated optical phase changes can be beneficial or undesired depending on the application, but require proper quantification. Measuring optical phase modulation of dilute 2D materials is, however, not trivial with common methods. Here, we demonstrate that 2D colloidal CdSe quantum wells, a useful model system, can modulate the phase of light across a broad spectrum using a femtosecond interferometry method. Next, we develop a toolbox to calculate the time-dependent refractive index of colloidal 2D materials from widely available transient absorption experiments using a modified effective medium algorithm. Our results show that the excitonic features of 2D materials result in broadband, ultrafast, and sizable phase modulation, even extending to the near infrared because of intraband transitions.

6.
Biophys J ; 121(11): 2193-2205, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35474264

RESUMO

Nucleic-acid aptamers are bio-molecular recognition agents that bind to their targets with high specificity and affinity and hold promise in a range of biosensor and therapeutic applications. In the case of small-molecule targets, their small size and limited number of functional groups constitute challenges for their detection by aptamer-based biosensors because bio-recognition events may both be weak and produce poorly transduced signals. The binding affinity is principally used to characterize aptamer-ligand interactions; however, a structural understanding of bio-recognition is arguably more valuable in order to design a strong response in biosensor applications. Using a combination of nuclear magnetic resonance, circular dichroism, and isothermal titration calorimetry, we propose a binding model for a new methamphetamine aptamer and determine the main interactions driving complex formation. These measurements reveal only modest structural changes to the aptamer upon binding and are consistent with a conformational-selection binding model. The aptamer-methamphetamine complex formation was observed to be entropically driven, apparently involving hydrophobic and electrostatic interactions. Taken together, our results exemplify a means of elucidating small molecule-aptamer binding interactions, which may be decisive in the development of aptasensors and therapeutics and may contribute to a deeper understanding of interactions driving aptamer selection.


Assuntos
Aptâmeros de Nucleotídeos , Metanfetamina , Aptâmeros de Nucleotídeos/química , Calorimetria/métodos , Dicroísmo Circular , Ligantes
7.
Nano Lett ; 21(23): 10062-10069, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842440

RESUMO

Colloidal CdSe quantum rings (QRs) are a recently developed class of nanomaterials with a unique topology. In nanocrystals with more common shapes, such as dots and platelets, the photophysics is consistently dominated by strongly bound electron-hole pairs, so-called excitons, regardless of the charge carrier density. Here, we show that charge carriers in QRs condense into a hot uncorrelated plasma state at high density. Through strong band gap renormalization, this plasma state is able to produce broadband and sizable optical gain. The gain is limited by a second-order, yet radiative, recombination process, and the buildup is counteracted by a charge-cooling bottleneck. Our results show that weakly confined QRs offer a unique system to study uncorrelated electron-hole dynamics in nanoscale materials.

8.
Nano Lett ; 20(3): 1819-1829, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049539

RESUMO

We combine state-of-the-art ultrafast photoluminescence and absorption spectroscopy and nonadiabatic molecular dynamics simulations to investigate charge-carrier cooling in CsPbBr3 nanocrystals over a very broad size regime, from 0.8 to 12 nm. Contrary to the prevailing notion that polaron formation slows down charge-carrier cooling in lead-halide perovskites, no suppression of carrier cooling is observed in CsPbBr3 nanocrystals except for a slow cooling (over ∼10 ps) of "warm" electrons in the vicinity (within ∼0.1 eV) of the conduction band edge. At higher excess energies, electrons and holes cool with similar rates, on the order of 1 eV ps-1 carrier-1, increasing weakly with size. Our ab initio simulations suggest that cooling proceeds via fast phonon-mediated intraband transitions driven by strong and size-dependent electron-phonon coupling. The presented experimental and computational methods yield the spectrum of involved phonons and may guide the development of devices utilizing hot charge carriers.

9.
Soft Matter ; 16(28): 6563-6571, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32588868

RESUMO

Increased water solubility and long-range intermolecular ordering have been introduced into the fluorescent organic molecule thiophene-diketopyrrolopyrrole (TDPP) via its conjugation to the octapeptide HEFISTAH, which is derived from the protein-protein ß-interface of the homo-tetramer protein diaminopimelate decarboxylase. The octapeptide, and its TDPP mono- and cross-linked conjugates were synthesised using 9-fluorenylmethoxycarbonyl (Fmoc) based solid-phase peptide synthesis (SPPS). Unlike the unmodified peptide, the resulting mono-linked and cross-linked peptides showed a fibrous morphology and formed hydrogels at 4 wt% in water at neutral pH, but failed to assemble at pH 2 and pH 9. Further peptide characterization showed that the TDPP organic core enhances peptide self-assembly and that both peptides assembled into fibers with a parallel ß-sheet structure. Furthermore, UV-vis spectroscopic analysis suggests that the TDPP molecules form H-type aggregates where the chromophores are likely to be co-facially packed, but rotationally and/or laterally offset from one another. This intermolecular coupling indicates that π-π stacking interactions are highly likely - a favourable sign for charge transport. The enhanced aqueous solubility and self-assembling properties of the TDPP-peptide conjugates allowed the successful preparation of thin films. Atomic force microscopy, X-ray diffraction and UV-vis spectroscopic analysis of these thin films revealed that the hybrid materials retained a fibrous morphology, ß-sheet structures and strong intermolecular coupling between neighbouring TDPP molecules. These results open an exciting avenue for bio-organic materials development, through structural and electronic tuning of the TDPP core.


Assuntos
Peptídeos , Pirróis , Hidrogéis , Concentração de Íons de Hidrogênio , Cetonas
10.
J Phys Chem A ; 124(3): 591-600, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877043

RESUMO

Electronic coupling between excited states is a vital parameter required to describe ultrafast energy and charge transfer processes that occur in photoresponsive organic materials. In such systems, short-range Coulombic, exchange, overlap, and configuration interaction effects must all be accounted for. Although a number of methods are available, the evaluation of coupling between arbitrary excited states remains challenging. In this contribution, a flexible and scalable method for the calculation of short-range electronic coupling between excited states is developed. Excitation- or charge-localized states are projected onto the adiabatic states of a dimeric molecular system using an efficient wave function overlap algorithm. In addition to correctly treating Coulombic, exchange, and overlap contributions, the inclusion of multistate interactions is inherent in the procedure. The method is then used to disentangle excitation energy transfer, charge transfer, and charge recombination processes in donor/acceptor systems relevant to organic photovoltaics, with a view toward the development of material design principles. Calculations were performed within single-excitation frameworks, but the scheme has the potential to be extended to multireference/higher-order excitation quantum-chemical methods.

11.
J Am Chem Soc ; 141(17): 6922-6929, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964678

RESUMO

Modest exciton diffusion lengths dictate the need for nanostructured bulk heterojunctions in organic photovoltaic (OPV) cells; however, this morphology compromises charge collection. Here, we reveal rapid exciton diffusion in films of a fused-ring electron acceptor that, when blended with a donor, already outperforms fullerene-based OPV cells. Temperature-dependent ultrafast exciton annihilation measurements are used to resolve a quasi-activationless exciton diffusion coefficient of at least 2 × 10-2 cm2/s, substantially exceeding typical organic semiconductors and consistent with the 20-50 nm domain sizes in optimized blends. Enhanced three-dimensional diffusion is shown to arise from molecular and packing factors; the rigid planar molecular structure is associated with low reorganization energy, good transition dipole moment alignment, high chromophore density, and low disorder, all enhancing long-range resonant energy transfer. Relieving exciton diffusion constraints has important implications for OPVs; large, ordered, and pure domains enhance charge separation and transport, and suppress recombination, thereby boosting fill factors. Further enhancements to diffusion lengths may even obviate the need for the bulk heterojunction morphology.

12.
J Am Chem Soc ; 141(6): 2329-2341, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30620190

RESUMO

The involvement of charge-transfer (CT) states in the photogeneration and recombination of charge carriers has been an important focus of study within the organic photovoltaic community. In this work, we investigate the molecular factors determining the mechanism of photocurrent generation in low-donor-content organic solar cells, where the active layer is composed of vacuum-deposited C60 and small amounts of organic donor molecules. We find a pronounced decline of all photovoltaic parameters with decreasing CT state energy. Using a combination of steady-state photocurrent measurements and time-delayed collection field experiments, we demonstrate that the power conversion efficiency, and more specifically, the fill factor of these devices, is mainly determined by the bias dependence of photocurrent generation. By combining these findings with the results from ultrafast transient absorption spectroscopy, we show that blends with small CT energies perform poorly because of an increased nonradiative CT state decay rate and that this decay obeys an energy-gap law. Our work challenges the common view that a large energy offset at the heterojunction and/or the presence of fullerene clusters guarantee efficient CT dissociation and rather indicates that charge generation benefits from high CT state energies through a slower decay to the ground state.

13.
J Am Chem Soc ; 140(44): 14938-14944, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30354087

RESUMO

We report the fused ring electron acceptor (FREA)-perovskite hybrid as a promising platform to fabricate organic-inorganic hybrid solar cells with simple preparation, high efficiency, and good stability. The FREA-perovskite hybrid films exhibit larger grain sizes and stronger crystallinity than the pristine perovskite films. Moreover, the FREA molecules can form coordination bonding with undercoordinated Pb atoms and passivate the trap states in the perovskite films. Time-resolved photoluminescence and transient absorption measurements reveal that FREA facilitates efficient electron extraction and collection. Transient photocurrent and photovoltage measurements suggest faster charge transfer and reduced charge recombination in solar cells based on FREA-perovskite hybrid films. Consequently, solar cells based on FREA-perovskite hybrid films yield a champion efficiency of 21.7% with enhanced stability, which is higher than that of the control devices based on pristine perovskite films (19.6%).

14.
Langmuir ; 34(33): 9692-9700, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30056697

RESUMO

The functionalization of II-VI nanocrystals with semiconducting polymers is of fundamental interest for lightweight, solution-processed optoelectronics. The direct surface functionalization of nanocrystals is useful for facilitating charge transfer across the donor/acceptor interface, in addition to promoting good mixing properties and thereby helping prevent nanoparticle aggregation. In this work, we develop a new method for the direct attachment of semiconducting polymers to II-VI inorganic nanocrystals, where the polymer plays a dual role, acting as both the desired capping agent and a chalcogenide monomer during synthesis. The success of this hybridization procedure relies on the establishment of a new polymer end-functionalization scheme, where a route toward a thio-phosphonate polymer end-group is developed; this end-group resembles many chalcogenide precursor materials used in the synthesis of II-VI nanomaterials. We show the applicability of this hybrid functionalization procedure by attaching poly(3-hexylthiophene-2,5-diyl) to CdSe and CdS. We followed the progress of the reaction by NMR and used transmission electron microscopy to determine the morphology of the resulting materials, which we found to have narrow size distributions after hybridization. Polymer attachment to the nanocrystals was confirmed by examining the steady-state and time-resolved optical properties of the hybrid materials, which also provided an insight into excited-state processes occurring across the hybrid interface.

15.
Anal Chem ; 89(14): 7416-7424, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28612604

RESUMO

A lateral flow assay (LFA) can provide a rapid and cost-effective means to detect targets in situ; however, existing LFA formats (predominantly sandwich assays) are not suitable for small molecule targets. We present a new LFA design that probes the dissociation of aptamers from the surface of gold nanoparticles upon recognition of small targets. The target-induced removal of aptamer molecules from the surface of the colored particles results in the particles being captured on a test line comprised of the protein bovine serum albumin immobilized on nitrocellulose. On the other hand, in the absence of target, aptamer coated particles are protected from capture on the test line and are instead captured at a control line comprised of the protein lysozyme. This protein is strongly positively charged under measurement conditions and therefore captures all gold nanoparticles regardless of the presence of aptamers. The effectiveness and operation mechanism of this simply fabricated sensor was demonstrated by using a previously reported 35-mer aptamer for a small molecule, 17ß-estradiol. The sensor exhibited nanomolar level of detection, excellent selectivity against potential interfering molecules, and robust operation in natural river water samples. The simplicity and performance of the sensor platform renders it applicable to a wide range of other aptamers targeting small molecules, as we demonstrated with a novel bisphenol A aptamer. Additionally, we show that our LFA design is not confined to the specific proteins used as test and control lines, provided that their charge is appropriate to modulate the interaction with aptamer-coated or bare nanoparticles.

16.
Nat Mater ; 20(3): 289-290, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33106650
17.
Chemphyschem ; 18(14): 1881-1887, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28480625

RESUMO

DNA aptamers can exhibit high affinity and selectivity towards their targets, but the aptamer-target complex structures are rarely available from crystallography and often difficult to elucidate. This is particularly true of small molecule targets, including 17ß-estradiol (E2), which is becoming one of the most widely encountered endocrine-disrupting chemicals in the environment. Using molecular dynamics simulations, we demonstrate that E2 binds to a thymine loop region common to all E2-specific aptamers in the literature. Analyzing these structures allows us to design new E2 binding sequences. As well as illuminating the essential sequence and structural factors for generating specificity for E2, we demonstrate the effectiveness of molecular dynamics simulations for aptamer science.


Assuntos
Aptâmeros de Nucleotídeos/química , Estradiol/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Estrutura Molecular
18.
Phys Chem Chem Phys ; 18(3): 1712-9, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26672731

RESUMO

Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent transfer between localized states. Polarization resolved spectroscopy was used to measure the dipolar angles between donor and acceptor chromophores, thereby enabling geometric factors to be fixed when assessing the validity of Förster theory in this regime. Förster theory was found to predict the correct magnitude of transfer rates, with measured ∼2-fold deviations consistent with the breakdown of the point-dipole approximation at close approach. The materials presented, along with the novel methods for quantifying ultrahigh energy transfer efficiencies, will be valuable for applications demanding extremely efficient energy transfer, including fluorescent solar concentrators, optical gain, and photonic logic devices.

19.
Anal Chem ; 87(8): 4201-9, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25803717

RESUMO

We report a strategy enabling ultrasensitive colorimetric detection of 17ß-estradiol (E2) in water and urine samples using DNA aptamer-coated gold nanoparticles (AuNPs). Starting from an established sensor format where aggregation is triggered when target-bound aptamers dissociate from AuNP surfaces, we demonstrated that step-change improvements are easily accessible through deletion of excess flanking nucleotides from aptamer sequences. After evaluating the lowest energy two-dimensional configuration of the previously isolated E2 binding 75-mer aptamer (KD ∼25 nM), new 35-mer and 22-mer aptamers were generated with KD's of 14 and 11 nM by simply removing flanking nucleotides on either side of the inner core. The shorter aptamers were found to improve discrimination against other steroidal molecules and to improve colorimetric sensitivity for E2 detection by 25-fold compared with the 75-mer to 200 pM. In comparing the response of all sequences, we find that the excess flanking nucleotides suppress signal transduction by causing target-bound aptamers to remain adhered to AuNPs, which we confirm via surface sensitive electrochemical measurements. However, comparison between the 22-mer and 35-mer systems show that retaining a small number of excess bases is optimal. The performance advances we achieved by specifically considering the signal transduction mechanism ultimately resulted in facile detection of E2 in urine, as well as enabling environmental detection of E2 at levels approaching biological relevance.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , Estradiol/análise , Sequência de Bases , Colorimetria , Ouro/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA