Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 540(7634): 607-610, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27842382

RESUMO

RNA polymerase I (Pol I) is a highly processive enzyme that transcribes ribosomal DNA (rDNA) and regulates growth of eukaryotic cells. Crystal structures of free Pol I from the yeast Saccharomyces cerevisiae have revealed dimers of the enzyme stabilized by a 'connector' element and an expanded cleft containing the active centre in an inactive conformation. The central bridge helix was unfolded and a Pol-I-specific 'expander' element occupied the DNA-template-binding site. The structure of Pol I in its active transcribing conformation has yet to be determined, whereas structures of Pol II and Pol III have been solved with bound DNA template and RNA transcript. Here we report structures of active transcribing Pol I from yeast solved by two different cryo-electron microscopy approaches. A single-particle structure at 3.8 Å resolution reveals a contracted active centre cleft with bound DNA and RNA, and a narrowed pore beneath the active site that no longer holds the RNA-cleavage-stimulating domain of subunit A12.2. A structure at 29 Å resolution that was determined from cryo-electron tomograms of Pol I enzymes transcribing cellular rDNA confirms contraction of the cleft and reveals that incoming and exiting rDNA enclose an angle of around 150°. The structures suggest a model for the regulation of transcription elongation in which contracted and expanded polymerase conformations are associated with active and inactive states, respectively.

2.
J Struct Biol ; 186(2): 205-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24698954

RESUMO

Correlative microscopy incorporates the specificity of fluorescent protein labeling into high-resolution electron micrographs. Several approaches exist for correlative microscopy, most of which have used the green fluorescent protein (GFP) as the label for light microscopy. Here we use chemical tagging and synthetic fluorophores instead, in order to achieve protein-specific labeling, and to perform multicolor imaging. We show that synthetic fluorophores preserve their post-embedding fluorescence in the presence of uranyl acetate. Post-embedding fluorescence is of such quality that the specimen can be prepared with identical protocols for scanning electron microscopy (SEM) and transmission electron microscopy (TEM); this is particularly valuable when singular or otherwise difficult samples are examined. We show that synthetic fluorophores give bright, well-resolved signals in super-resolution light microscopy, enabling us to superimpose light microscopic images with a precision of up to 25 nm in the x-y plane on electron micrographs. To exemplify the preservation quality of our new method we visualize the molecular arrangement of cadherins in adherens junctions of mouse epithelial cells.


Assuntos
Corantes Fluorescentes , Microscopia Eletrônica/métodos , Coloração e Rotulagem/métodos , Junções Aderentes/ultraestrutura , Animais , Caderinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Camundongos , Compostos Organometálicos
3.
Nat Struct Mol Biol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316877

RESUMO

Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.

4.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506714

RESUMO

The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.


Assuntos
Tomografia com Microscopia Eletrônica , Matriz Extracelular , Transporte Biológico , Movimento Celular , Citosol , Tomografia com Microscopia Eletrônica/métodos , Matriz Extracelular/ultraestrutura
5.
Sci Adv ; 9(3): eadd6495, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662867

RESUMO

Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform-specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Actinas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/análise , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Isoformas de Proteínas/metabolismo
6.
Nat Struct Mol Biol ; 29(9): 942-953, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097293

RESUMO

The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 12(1): 3483, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108481

RESUMO

The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Adenosina Trifosfatases/química , Compostos de Boro/química , Proteínas de Saccharomyces cerevisiae/química , Domínio AAA , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Compostos de Boro/farmacologia , Resistência a Medicamentos/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Mutação , Nucleotídeos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 11(1): 6437, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353942

RESUMO

The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/ultraestrutura , Tomografia com Microscopia Eletrônica , Fibroblastos/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Camundongos , Modelos Moleculares , Células NIH 3T3 , Conformação Proteica , Pseudópodes/metabolismo
9.
Nat Commun ; 11(1): 5569, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149120

RESUMO

Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding.


Assuntos
Cisteína/química , Dissulfetos/química , Biossíntese de Proteínas , Ribossomos/química , Ribossomos/metabolismo , gama-Cristalinas/química , Microscopia Crioeletrônica , Cisteína/metabolismo , Glutationa/análogos & derivados , Glutationa/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Mutação , Oxirredução , Conformação Proteica , Dobramento de Proteína , Ribossomos/genética , S-Nitrosotióis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA