RESUMO
Chagas disease (CD), which is caused by Trypanosoma cruzi and was discovered more than 100 years ago, remains the leading cause of death from parasitic diseases in the Americas. As a curative treatment is only available for the acute phase of CD, the search for new therapeutic options is urgent. In this study, nitroazole and azole compounds were synthesized and underwent molecular modeling, anti-T. cruzi evaluations and nitroreductase enzymatic assays. The compounds were designed as possible inhibitors of ergosterol biosynthesis and/or as substrates of nitroreductase enzymes. The in vitro evaluation against T. cruzi clearly showed that nitrotriazole compounds are significantly more potent than nitroimidazoles and triazoles. When their carbonyls were reduced to hydroxyl groups, the compounds showed a significant increase in activity. In addition, these substances showed potential for action via nitroreductase activation, as the substances were metabolized at higher rates than benznidazole (BZN), a reference drug against CD. Among the compounds, 1-(2,4-difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanol (8) is the most potent and selective of the series, with an IC50 of 0.39 µM and selectivity index of 3077; compared to BZN, 8 is 4-fold more potent and 2-fold more selective. Moreover, this compound was not mutagenic at any of the concentrations evaluated, exhibited a favorable in silico ADMET profile and showed a low potential for hepatotoxicity, as evidenced by the high values of CC50 in HepG2 cells. Furthermore, compared to BZN, derivative 8 showed a higher rate of conversion by nitroreductase and was metabolized three times more quickly when both compounds were tested at a concentration of 50 µM. The results obtained by the enzymatic evaluation and molecular docking studies suggest that, as planned, nitroazole derivatives may utilize the nitroreductase metabolism pathway as their main mechanism of action against Trypanosoma cruzi. In summary, we have successfully identified and characterized new nitrotriazole analogs, demonstrating their potential as promising candidates for the development of Chagas disease drug candidates that function via nitroreductase activation, are considerably selective and show no mutagenic potential.
Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Mutagênicos/farmacologia , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Triazóis/química , Nitrorredutases/metabolismoRESUMO
BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.
Assuntos
COVID-19 , Preparações Farmacêuticas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbamatos , Chlorocebus aethiops , Humanos , Imidazóis , Pirrolidinas , RNA Viral , SARS-CoV-2 , Sofosbuvir/farmacologia , Valina/análogos & derivados , Células VeroRESUMO
The enzyme tyrosine kinase BCR-Abl-1 is the main molecular target in the treatment of chronic myeloid leukemia and can be competitively inhibited by tyrosine kinase inhibitors such as imatinib. New potential competitive inhibitors were synthesized using the (phenylamino)pyrimidine-pyridine (PAPP) group as a pharmacophoric fragment, and these compounds were biologically evaluated. The synthesis of twelve new compounds was performed in three steps and assisted by microwave irradiation in a 1,3-dipolar cycloaddition to obtain 1,2,3-triazole derivatives substituted on carbon C-4 of the triazole nucleus. All compounds were evaluated for their inhibitory activities against a chronic myeloid leukemia cell line (K562) that expresses the enzyme tyrosine kinase BCR-Abl-1 and against healthy cells (WSS-1) to observe their selectivity. Three compounds showed promising results, with IC50 values between 1.0 and 7.3 µM, and were subjected to molecular docking studies. The results suggest that such compounds can interact at the same binding site as imatinib, probably sharing a competitive inhibition mechanism. One compound showed the greatest interaction affinity for BCR-Abl-1 in the docking studies.
RESUMO
Extracellular ATP activates purinergic receptors such as P2X7, cationic channels for Ca2+, K+, and Na+. There is robust evidence of the involvement of these receptors in the immune response, so P2X7 receptors (P2X7R) are considered a potential therapeutic target for the development of anti-inflammatory drugs. Although there are many studies of the anti-inflammatory properties of naphthoquinones, these molecules have not yet been explored as P2X7 antagonists. In previous work, our group prepared 3-substituted (halogen or aryl) 2-hydroxy-1,4-naphthoquinones and studied their action on P2X7R. In this paper, eight 2-amino-3-aryl-1,4-naphthoquinones were evaluated to identify the inhibitory activity on P2X7R and the toxicological profile. Three analogues (AD-4CN, AD-4Me, and AD-4F) exhibited reduced toxicity for mammalian cells with CC50 values higher than 500 µM. These three 3-substituted 2-amino-1,4-naphthoquinones inhibited murine P2X7R (mP2X7R) in vitro. However, the analogues AD-4CN and AD-4Me showed low selectivity index values. AD-4F inhibited both mP2X7R and human P2X7R (hP2X7R) with IC50 values of 0.123 and 0.93 µM, respectively. Additionally, this analogue exhibited higher potency than BBG at inhibiting the ATP-induced release of IL-1ß in vitro. Carrageenan-induced paw edema in vivo was reversed for AD-4F with an ID50 value of 11.51 ng/kg. Although AD-4F was less potent than previous 3-substituted (halogen or aryl) 2-hydroxy-1,4-naphthoquinones such as AN-04in vitro, this 3-substituted 2-amino-1,4-naphthoquinone revealed higher potency in vivo to reduce the edematogenic response. In silico analysis suggests that the binding site of the novel 2-amino-3-aryl-1,4-naphthoquinone derivatives, including all the tautomeric forms, is located in the pore area of the hP2X7R model. Based on these results, we considered AD-4F to be a satisfactory P2X7R inhibitor. AD-4F might be used as a scaffold structure to design a novel series of inhibitors with potential inhibitory activity on murine (mP2X7R) and human (hP2X7R) P2X7 receptors.
Assuntos
Naftoquinonas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina , Animais , Células CACO-2 , Carragenina , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Células HEK293 , Humanos , Masculino , Camundongos , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/química , Relação Estrutura-AtividadeRESUMO
There are only two drugs for the treatment of Chagas disease, namely, nifurtimox and benznidazole, that can cause several adverse effects. Despite the effectiveness of these drugs in the disease's acute phase, they are not recognized as curative in the chronic phase, establishing the need for more effective treatment in all stages of the disease. Cruzain is an enzyme that plays a vital role in the life cycle of the etiologic agent, the protozoan Trypanosoma cruzi, being relevant as a therapeutic target in the planning of new drugs. Using molecular docking and dynamics simulations, we have investigated the structural and dynamic factors that can be involved in the enzyme inhibition process at the atomic-molecular level by benzimidazole compounds that are potent cruzain inhibitors with in vitro trypanocidal activity. The study suggests that these inhibitors bind cruzain through steric and hydrogen bonding interactions without altering its secondary structure content and protein compaction. Besides, we observed that these inhibitors decrease the correlation of movements between Cα-atoms of cruzain, increasing the number of atomic communities, mainly in the α-helix that presents the catalytic Cys25 residue. As expected, we also observed a correlation between the inhibitory activity of each inhibitor and their respective binding-free energies, reinforcing that the affinity of the complexes seems to be a relevant factor for enzymatic inhibition. Hence, the results presented in this work contribute to a better understanding of the cruzain enzyme inhibition mechanism through competitive and non-covalent inhibitors.Communicated by Ramaswamy H. Sarma.
Assuntos
Tripanossomicidas , Trypanosoma cruzi , Simulação de Acoplamento Molecular , Cisteína Endopeptidases/química , Proteínas de Protozoários , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Inibidores de Cisteína Proteinase/químicaRESUMO
Infectious diseases are among the leading causes of death worldwide, especially in developing countries. The historical lack of interest of the pharmaceutical industry in developing new drugs against many of these diseases, such as tuberculosis, leishmaniasis, Chagas disease, sleeping sickness, and fungal infections, has left millions of individuals dependent on old treatments that are often ineffective and present different adverse effects. In this sense, new substances against these diseases must be identified. A class of substances that has stood out in the search for new drugs against these diseases is azole derivatives. Within this class, the 3-nitro-1,2,4-triazole nucleus has attracted increasing interest due to its potential, specifically when compared to the 1,2,4-triazole nucleus without the presence of the nitro group, and also in relation to the 2-nitroimidazole nucleus, showing greater potency and selectivity against different etiological agents. This is even more relevant considering that 3-nitro-1,2,4-triazolic substances can promote their activity through different mechanisms of action, such as the inhibition of ergosterol biosynthesis and also via activation by the nitroreductase enzyme, which can avoid the development of cross-resistance. Therefore, in this review, the medicinal chemistry of nitrotriazoles is discussed through the analysis of their potential in terms of biological activity against the etiological agents of several diseases, such as Chagas disease, sleeping sickness and leishmaniasis, caused by kinetoplastid parasites, tuberculosis, caused by the mycobacteria Mycobacterium tuberculosis, and against different species of pathogenic fungi. In addition, aspects related to enzymatic activities, molecular modeling and organic synthesis of these substances are also addressed.
Assuntos
Química Farmacêutica , Doenças Transmissíveis , Triazóis , Animais , Humanos , Doença de Chagas/tratamento farmacológico , Doenças Transmissíveis/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Micoses/tratamento farmacológico , Triazóis/química , Triazóis/farmacologia , Triazóis/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tuberculose/tratamento farmacológicoRESUMO
Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV) and remains a global health problem four decades after the report of its first case. Despite success in viral load suppression and the increase in patient survival due to combined antiretroviral therapy (cART), the development of new drugs has become imperative due to strains that have become resistant to antiretrovirals. In this context, there has been a continuous search for new anti-HIV agents based on several chemical scaffolds, including nitrogenated heterocyclic pyrrole rings, which have been included in several compounds with antiretroviral activity. Thus, this review aims to describe pyrrole-based compounds with anti-HIV activity as a new potential treatment against AIDS, covering the period between 2015 and 2020. Our research allowed us to conclude that pyrrole derivatives are still worth exploring, as they may provide highly active compounds targeting different steps of the HIV-1 replication cycle and act with an innovative mechanism.
RESUMO
Aromatic aldehydes bearing electron-donating groups are easily converted into their respective nitriles using NH(2)OH.HCl and TiO(2) under microwave irradiation, while those bearing an electron-withdrawing group give the corresponding oximes.
Assuntos
Aldeídos/química , Ácido Clorídrico/química , Hidróxidos/química , Micro-Ondas , Nitrilas/química , Oximas/química , Titânio/química , Hidróxido de Amônia , Benzaldeídos/química , Cromatografia Gasosa , Espectrometria de Massas , Solventes/química , Fatores de TempoRESUMO
Yellow fever virus (YFV) is a member of the Flaviviridae family. In Brazil, yellow fever (YF) cases have increased dramatically in sylvatic areas neighboring urban zones in the last few years. Because of the high lethality rates associated with infection and absence of any antiviral treatments, it is essential to identify therapeutic options to respond to YFV outbreaks. Repurposing of clinically approved drugs represents the fastest alternative to discover antivirals for public health emergencies. Other Flaviviruses, such as Zika (ZIKV) and dengue (DENV) viruses, are susceptible to sofosbuvir, a clinically approved drug against hepatitis C virus (HCV). Our data showed that sofosbuvir docks onto YFV RNA polymerase using conserved amino acid residues for nucleotide binding. This drug inhibited the replication of both vaccine and wild-type strains of YFV on human hepatoma cells, with EC50 values around 5 µM. Sofosbuvir protected YFV-infected neonatal Swiss mice and adult type I interferon receptor knockout mice (A129-/-) from mortality and weight loss. Because of its safety profile in humans and significant antiviral effects in vitro and in mice, Sofosbuvir may represent a novel therapeutic option for the treatment of YF. Key-words: Yellow fever virus; Yellow fever, antiviral; sofosbuvir.
Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , RNA Viral/efeitos dos fármacos , Sofosbuvir/farmacologia , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , RNA Viral/sangue , RNA Viral/genética , Células Vero , Febre Amarela/sangue , Febre Amarela/patologia , Febre Amarela/virologia , Vírus da Febre Amarela/genéticaRESUMO
Chagas disease has spread throughout the world mainly because of the migration of infected individuals. In Brazil, only benznidazole (Bnz) is used; however, it is toxic and not active in the chronic phase, and cases of resistance are described. This work aimed at the synthesis and the trypanocidal evaluation in vitro and in vivo of six new Bnz analogues (3-8). They were designed by exploring the bioisosteric substitution between the amide group contained in Bnz and the 1,2,3-triazole ring. All the compounds were synthesized in good yields. With the exception of compound 7, the in vitro biological evaluation shows that all Bnz analogues were active against the amastigote form, whereas only compounds 3, 4, 5, and 8 were active against trypomastigote. Compounds 4 and 5 showed the most promising activities in vitro against the form of trypomastigote, being more active than Bnz. In vivo evaluation of compounds, 3-8 showed lower potency and higher toxicity than Bnz. Although the 1,2,3-triazole ring has been described in the literature as an amide bioisostere, its substitution here has reduced the activity of the compounds and made them more toxic. Thus, further molecular optimization could provide novel therapeutic agents for Chagas' disease.
Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/química , Triazóis/química , Tripanossomicidas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/veterinária , Masculino , Camundongos , Nifurtimox/química , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacosRESUMO
Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.
Assuntos
Antivirais/farmacologia , Sofosbuvir/farmacologia , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia , Antivirais/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Viral , Humanos , Mutação , Sofosbuvir/uso terapêutico , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/patologia , Infecção por Zika virus/virologiaRESUMO
Acetylcholine inhibitors (AChEIs) are currently considered as potential drugs for treating Alzheimer disease. In this work, we developed a receptor-dependent 3D-QSAR (RD-3D-QSAR) models based on a series of 60 benzylpiperidine inhibitors of human acetylcholinesterase to support the design of new AChEIs. The best two models, A-F (N = 47, q(2) = 0.736, r(2) = 0.860) and C-F (N = 47, q(2) = 0.753, r(2) = =0.900) were developed and validated by a combined GA-PLS approach, available in WOLF. Residues of the aromatic gorge (Tyr341 and Trp439) and catalytic triad (His447) are related to both equations showing the consistency of these models with the SAR. Based on those models we have proposed four new benzylpiperidine derivatives and predicted the pIC(50) for each molecule. The good predicted potency of benzylpiperidine derivative, IIa, indicates that it is a potential candidate as a new HuAChE inhibitor.