Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 27(8): 11869-11876, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053026

RESUMO

Si3N4 waveguides, pumped at 1550 nm, can provide spectrally smooth, broadband light for gas spectroscopy in the important 2 µm to 2.5 µm atmospheric water window, which is only partially accessible with silica-fiber based systems. By combining Er+ fiber frequency combs and supercontinuum generation in tailored Si3N4 waveguides, high signal-to-noise dual-comb spectroscopy spanning 2 µm to 2.5 µm is demonstrated. Acquired broadband dual-comb spectra of CO and CO2 agree well with database line shape models and have a spectral-signal-to-noise as high as 48/√s, showing that the high coherence between the two combs is retained in the Si3N4 supercontinuum generation. The dual-comb spectroscopy figure of merit is 6 × 106/√s, equivalent to that of all-fiber dual-comb spectroscopy systems in the 1.6 µm band. based on these results, future dual-comb spectroscopy can combine fiber comb technology with Si3N4 waveguides to access new spectral windows in a robust non-laboratory platform.

2.
Nat Commun ; 11(1): 3152, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561738

RESUMO

Spectrally resolved photoacoustic imaging is promising for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds and causes errors if the sample changes in time between images acquired at different wavelengths. We demonstrate a solution to this problem by using dual-comb spectroscopy for photoacoustic measurements. This approach enables a photoacoustic measurement at thousands of wavelengths simultaneously. In this technique, two optical-frequency combs are interfered on a sample and the resulting pressure wave is measured with an ultrasound transducer. This acoustic signal is processed in the frequency-domain to obtain an optical absorption spectrum. For a proof-of-concept demonstration, we measure photoacoustic signals from polymer films. The absorption spectra obtained from these measurements agree with those measured using a spectrophotometer. Improving the signal-to-noise ratio of the dual-comb photoacoustic spectrometer could enable high-speed spectrally resolved photoacoustic imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA