RESUMO
Very short chemical exchange saturation transfer (CEST) pulses are beneficial in cardiac continuous wave (cw) CEST MRI, especially in small animals because of their rapid heartbeat; however, they result in signal modulations caused by Rabi oscillations. Therefore, we implemented two different filter techniques, DOwnsampling by SEparation of CEST spectrum into two parts (DOSE) and time domain (TD)-based filtering, to correct for these signal corruptions, allowing a reliable quantification of glucose-weighted CEST (glucoCEST) MRI contrast. In our study, cw CEST measurements were performed on a 9.4-T small animal BioSpec system using CEST pulses in the range of 10 to 200 ms. Experimental dependencies of Rabi oscillations on key MRI parameters were validated by Bloch-McConnell (BM) simulations. Filter efficiency was explored in a glucose concentration series as well as in the myocardium of healthy mice (n = 8), and glucoCEST contrast was subsequently quantified. The experimental results showed that the impact of Rabi oscillations on CEST spectra increased with decreasing CEST pulse length, optimized B0 homogeneity, and shorter T2 relaxation time, in accordance with results from BM simulations. Both investigated filter techniques reduced these signal modulations significantly, with DOSE filtering preserving the amplitude and TD filtering the spectral information of CEST data more accurately. Upon filter application, a significant decrease in glucoCEST contrast in the myocardium of healthy mice was observed after glucose infusion (pTD = 0.0079, pDOSE = 0.0044). To conclude, this study offers comprehensive experimental insights into Rabi oscillations within CEST MRI data along with methodological considerations that could be further advanced into a robust and precise cardiac cw CEST protocol by integrating DOSE and TD filtering into the standard CEST analysis pipeline.
Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Camundongos , Animais , Simulação por Computador , Imageamento por Ressonância Magnética/métodos , Concentração de Íons de Hidrogênio , GlucoseRESUMO
BACKGROUND: Response assessment of targeted cancer therapies is becoming increasingly challenging, as it is not adequately assessable with conventional morphological and volumetric analyses of tumor lesions. The tumor microenvironment is particularly constituted by tumor vasculature which is altered by various targeted therapies. The aim of this study was to noninvasively assess changes in tumor perfusion and vessel permeability after targeted therapy in murine models of breast cancer with divergent degrees of malignancy. METHODS: Low malignant 67NR or highly malignant 4T1 tumor-bearing mice were treated with either the multi-kinase inhibitor sorafenib or immune checkpoint inhibitors (ICI, combination of anti-PD1 and anti-CTLA4). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with i.v. injection of albumin-binding gadofosveset was conducted on a 9.4 T small animal MRI. Ex vivo validation of MRI results was achieved by transmission electron microscopy, immunohistochemistry and laser ablation-inductively coupled plasma-mass spectrometry. RESULTS: Therapy-induced changes in tumor vasculature differed between low and highly malignant tumors. Sorafenib treatment led to decreased tumor perfusion and endothelial permeability in low malignant 67NR tumors. In contrast, highly malignant 4T1 tumors demonstrated characteristics of a transient window of vascular normalization with an increase in tumor perfusion and permeability early after therapy initiation, followed by decreased perfusion and permeability parameters. In the low malignant 67NR model, ICI treatment also mediated vessel-stabilizing effects with decreased tumor perfusion and permeability, while ICI-treated 4T1 tumors exhibited increasing tumor perfusion with excessive vascular leakage. CONCLUSION: DCE-MRI enables noninvasive assessment of early changes in tumor vasculature after targeted therapies, revealing different response patterns between tumors with divergent degrees of malignancy. DCE-derived tumor perfusion and permeability parameters may serve as vascular biomarkers that allow for repetitive examination of response to antiangiogenic treatment or immunotherapy.
Assuntos
Neoplasias , Animais , Camundongos , Sorafenibe , Imunoterapia , Albuminas , Cognição , Microambiente TumoralRESUMO
BACKGROUND: With metabolic alterations of the tumor microenvironment (TME) contributing to cancer progression, metastatic spread and response to targeted therapies, non-invasive and repetitive imaging of tumor metabolism is of major importance. The purpose of this study was to investigate whether multiparametric chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) allows to detect differences in the metabolic profiles of the TME in murine breast cancer models with divergent degrees of malignancy and to assess their response to immunotherapy. METHODS: Tumor characteristics of highly malignant 4T1 and low malignant 67NR murine breast cancer models were investigated, and their changes during tumor progression and immune checkpoint inhibitor (ICI) treatment were evaluated. For simultaneous analysis of different metabolites, multiparametric CEST-MRI with calculation of asymmetric magnetization transfer ratio (MTRasym) at 1.2 to 2.0 ppm for glucose-weighted, 2.0 ppm for creatine-weighted and 3.2 to 3.6 ppm for amide proton transfer- (APT-) weighted CEST contrast was conducted. Ex vivo validation of MRI results was achieved by 1H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization mass spectrometry imaging with laser postionization and immunohistochemistry. RESULTS: During tumor progression, the two tumor models showed divergent trends for all examined CEST contrasts: While glucose- and APT-weighted CEST contrast decreased and creatine-weighted CEST contrast increased over time in the 4T1 model, 67NR tumors exhibited increased glucose- and APT-weighted CEST contrast during disease progression, accompanied by decreased creatine-weighted CEST contrast. Already three days after treatment initiation, CEST contrasts captured response to ICI therapy in both tumor models. CONCLUSION: Multiparametric CEST-MRI enables non-invasive assessment of metabolic signatures of the TME, allowing both for estimation of the degree of tumor malignancy and for assessment of early response to immune checkpoint inhibition.
Assuntos
Creatina , Neoplasias , Animais , Camundongos , Imunoterapia , Imageamento por Ressonância Magnética , Amidas , Glucose , Inibidores de Checkpoint ImunológicoRESUMO
BACKGROUND: Preventing sepsis-associated acute kidney injury (S-AKI) can be challenging because it develops rapidly and is often asymptomatic. Probability assessment of disease progression for therapeutic follow-up and outcome are important to intervene and prevent further damage. PURPOSE: To establish a noninvasive multiparametric MRI (mpMRI) tool, including T1 , T2 , and perfusion mapping, for probability assessment of the outcome of S-AKI. STUDY TYPE: Preclinical randomized prospective study. ANIMAL MODEL: One hundred and forty adult female SD rats (65 control and 75 sepsis). FIELD STRENGTH/SEQUENCE: 9.4T; T1 and perfusion map (FAIR-EPI) and T2 map (multiecho RARE). ASSESSMENT: Experiment 1: To identify renal injury in relation to sepsis severity, serum creatinine levels were determined (31 control and 35 sepsis). Experiment 2: Animals underwent mpMRI (T1 , T2 , perfusion) 18 hours postsepsis. A subgroup of animals was immediately sacrificed for histology examination (nine control and seven sepsis). Result of mpMRI in follow-up subgroup (25 control and 33 sepsis) was used to predict survival outcomes at 96 hours. STATISTICAL TESTS: Mann-Whitney U test, Spearman/Pearson correlation (r), P < 0.05 was considered statistically significant. RESULTS: Severely ill septic animals exhibited significantly increased serum creatinine levels compared to controls (70 ± 30 vs. 34 ± 9 µmol/L, P < 0.0001). Cortical perfusion (480 ± 80 vs. 330 ± 140 mL/100 g tissue/min, P < 0.005), and cortical and medullary T2 relaxation time constants were significantly reduced compared to controls (41 ± 4 vs. 37 ± 5 msec in cortex, P < 0.05, 52 ± 7 vs. 45 ± 6 msec in medulla, P < 0.05). The combination of cortical T2 relaxation time constants and perfusion results at 18 hours could predict survival outcomes at 96 hours with high sensitivity (80%) and specificity (73%) (area under curve of ROC = 0.8, Jmax = 0.52). DATA CONCLUSION: This preclinical study suggests combined T2 relaxation time and perfusion mapping as first line diagnostic tool for treatment planning. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Assuntos
Injúria Renal Aguda , Sepse , Feminino , Ratos , Animais , Estudos Prospectivos , Creatinina , Ratos Sprague-Dawley , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/patologia , Imageamento por Ressonância Magnética , Perfusão , Sepse/complicações , Sepse/diagnóstico por imagemRESUMO
Osteomyelitis is an infection of the bone that is often difficult to treat and causes a significant healthcare burden. Staphylococcus aureus is the most common pathogen causing osteomyelitis. Osteomyelitis mouse models have been established to gain further insights into the pathogenesis and host response. Here, we use an established S. aureus hematogenous osteomyelitis mouse model to investigate morphological tissue changes and bacterial localization in chronic osteomyelitis with a focus on the pelvis. X-ray imaging was performed to follow the disease progression. Six weeks post infection, when osteomyelitis had manifested itself with a macroscopically visible bone deformation in the pelvis, we used two orthogonal methods, namely fluorescence imaging and label-free Raman spectroscopy, to characterise tissue changes on a microscopic scale and to localise bacteria in different tissue regions. Hematoxylin and eosin as well as Gram staining were performed as a reference method. We could detect all signs of a chronically florid tissue infection with osseous and soft tissue changes as well as with different inflammatory infiltrate patterns. Large lesions dominated in the investigated tissue samples. Bacteria were found to form abscesses and were distributed in high numbers in the lesion, where they could occasionally also be detected intracellularly. In addition, bacteria were found in lower numbers in surrounding muscle tissue and even in lower numbers in trabecular bone tissue. The Raman spectroscopic imaging revealed a metabolic state of the bacteria with reduced activity in agreement with small cell variants found in other studies. In conclusion, we present novel optical methods to characterise bone infections, including inflammatory host tissue reactions and bacterial adaptation.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus/fisiologia , Osteomielite/patologia , Modelos Animais de Doenças , Inflamação , Infecções Estafilocócicas/microbiologia , Infecção PersistenteRESUMO
Staphylococcus aureus causes severe infections associated with inflammation, such as sepsis or osteomyelitis. Inflammatory processes are regulated by distinct lipid mediators (LMs) but how their biosynthetic pathways are orchestrated in S. aureus infections is elusive. We show that S. aureus strikingly not only modulates pro-inflammatory, but also inflammation-resolving LM pathways in murine osteomyelitis and osteoclasts as well as in human monocyte-derived macrophages (MDMs) with different phenotype. Targeted LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed massive generation of LM with distinct LM signature profiles in acute and chronic phases of S. aureus-induced murine osteomyelitis in vivo. In human MDM, S. aureus elevated cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1), but impaired the levels of 15-lipoxygenase-1 (15-LOX-1), with respective changes in LM signature profiles initiated by these enzymes, that is, elevated PGE2 and impaired specialized pro-resolving mediators, along with reduced M2-like phenotypic macrophage markers. The cell wall component, lipoteichoic acid (LTA), mimicked the impact of S. aureus elevating COX-2/mPGES-1 expression via NF-κB and p38 MAPK signalling in MDM, while the impairment of 15-LOX-1 correlates with reduced expression of Lamtor1. In conclusion, S. aureus dictates LM pathways via LTA resulting in a shift from anti-inflammatory M2-like towards pro-inflammatory M1-like LM signature profiles.
Assuntos
Osteomielite , Staphylococcus aureus , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Prostaglandina-E Sintases/metabolismo , Receptores Depuradores Classe E , Ácidos TeicoicosRESUMO
Staphylococcus aureus causes very serious infections of vascular grafts. Knowledge of the molecular mechanisms of this disease is largely lacking because of the absence of representable models. Therefore, the aim of this study was to set up a mouse model of vascular graft infections that closely mimics the human situation. A catheter was inserted into the right carotid artery of mice, which acted as a vascular graft. Mice were infected i.v. using 8 different S. aureus strains, and development of the infection was followed up. Although all strains had varying abilities to form biofilm in vitro and different levels of virulence in mice, they all caused biofilm formation on the grafts. This graft infection was monitored using magnetic resonance imaging (MRI) and 18F-fluordeoxyglucose positron emission tomography (FDG-PET). MRI allowed the quantification of blood flow through the arteries, which was decreased in the catheter after infection. FDG-PET revealed high inflammation levels at the site of the catheter after infection. This model closely resembles the situation in patients, which is characterized by a tight interplay between pathogen and host, and can therefore be used for the testing of novel treatment, diagnosis, and prevention strategies. In addition, combining MRI and PET with microscopic techniques provides an appropriate way to characterize the course of these infections and to precisely analyze biofilm development.
Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/diagnóstico por imagem , Modelos Animais de Doenças , Infecções Estafilocócicas/diagnóstico por imagem , Animais , Prótese Vascular/microbiologia , Ensaio de Imunoadsorção Enzimática , Hibridização in Situ Fluorescente , Imageamento por Ressonância Magnética , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tomografia por Emissão de Pósitrons , Staphylococcus aureusRESUMO
BACKGROUND: Inflammatory stimuli induce the hepatic iron regulatory hormone hepcidin, which contributes to anaemia of inflammation (AI). Hepcidin expression is regulated by the bone morphogenetic protein (BMP) and the interleukin-6 (IL-6) signalling pathways. Prior results indicate that the BMP type I receptor ALK3 is mainly involved in the acute inflammatory hepcidin induction four and 72 h after IL-6 administration. In this study, the role of ALK3 in a chronic model of inflammation was investigated. The intact, heat-killed bacterium Brucella abortus (BA) was used to analyse its effect on the development of inflammation and hypoferremia in mice with hepatocyte-specific Alk3-deficiency (Alk3fl/fl; Alb-Cre) compared to control (Alk3fl/fl) mice. RESULTS: An iron restricted diet prevented development of the iron overload phenotype in mice with hepatocyte-specific Alk3 deficiency. Regular diet leads to iron overload and increased haemoglobin levels in these mice, which protects from the development of AI per se. Fourteen days after BA injection Alk3fl/fl; Alb-Cre mice presented milder anaemia (Hb 16.7 g/dl to 11.6 g/dl) compared to Alk3fl/fl control mice (Hb 14.9 g/dl to 8.6 g/dl). BA injection led to an intact inflammatory response in all groups of mice. In Alk3fl/fl; Alb-Cre mice, SMAD1/5/8 phosphorylation was reduced after BA as well as after infection with Staphylococcus aureus. The reduction of the SMAD1/5/8 signalling pathway due to hepatocyte-specific Alk3 deficiency partly suppressed the induction of STAT3 signalling. CONCLUSION: The results reveal in vivo, that 1) hepatocyte-specific Alk3 deficiency partly protects from AI, 2) the development of hypoferremia is partly dependent on ALK3, and 3) the ALK3/BMP/hepcidin axis may serve as a possible therapeutic target to attenuate AI.
Assuntos
Anemia/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Inflamação/metabolismo , Anemia/complicações , Animais , Brucella abortus , Brucelose/complicações , Eritropoese , Feminino , Hepatócitos/metabolismo , Inflamação/etiologia , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismoRESUMO
Acute cellular renal allograft rejection (AR) frequently occurs after kidney transplantations. It is a sterile T-cell mediated inflammation leading to increased local glucose metabolism. Here we demonstrate in an allogeneic model of Brown Norway rat kidneys transplanted into uninephrectomized Lewis rats the successful implementation of the recently developed glucose chemical exchange saturation transfer (glucoCEST) magnetic resonance imaging. This technique is a novel method to assess and differentiate AR. Renal allografts undergoing AR showed significantly increased glucoCEST contrast ratios of cortex to medulla of 1.61 compared to healthy controls (1.02), syngeneic Lewis kidney to Lewis rat transplants without rejection (0.92), kidneys with ischemia reperfusion injury (0.99) and kidneys affected by cyclosporine A toxicity (1.10). Receiver operating characteristic curve analysis showed an area under the curve value of 0.92, and the glucoCEST contrast ratio predicted AR with a sensitivity of 100% and a specificity of 69% at a threshold level over 1.08. In defined animal models of kidney injuries, the glucoCEST contrast ratios of cortex to medulla correlated positively with mRNA expression levels of T-cell markers (CD3, CD4, CD8a/b), but did not correlate to impaired renal perfusion. Thus, the glucoCEST parameter may be valuable for the assessment and follow up treatment of AR.
Assuntos
Aloenxertos/diagnóstico por imagem , Rejeição de Enxerto/diagnóstico por imagem , Transplante de Rim/efeitos adversos , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Traumatismo por Reperfusão/diagnóstico por imagem , Aloenxertos/imunologia , Aloenxertos/patologia , Animais , Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Antígenos CD8 , Meios de Contraste , Ciclosporina/toxicidade , Modelos Animais de Doenças , Glucose/administração & dosagem , Glucose/metabolismo , Rejeição de Enxerto/induzido quimicamente , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Humanos , Rim/imunologia , Rim/patologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo/efeitos adversosRESUMO
BACKGROUND: The emergence of antibiotic resistant pathogenic bacteria has reduced our ability to combat infectious diseases. At the same time the numbers of new antibiotics reaching the market have decreased. This situation has created an urgent need to discover novel antibiotic scaffolds. Recently, the application of pattern recognition techniques to identify molecular fingerprints in 'omics' studies, has emerged as an important tool in biomedical research and laboratory medicine to identify pathogens, to monitor therapeutic treatments or to develop drugs with improved metabolic stability, toxicological profile and efficacy. Here, we hypothesize that a combination of metabolic intracellular fingerprints and extracellular footprints would provide a more comprehensive picture about the mechanism of action of novel antibiotics in drug discovery programs. RESULTS: In an attempt to integrate the metabolomics approach as a classification tool in the drug discovery processes, we have used quantitative (1)H NMR spectroscopy to study the metabolic response of Escherichia coli cultures to different antibiotics. Within the frame of our study the effects of five different and well-known antibiotic classes on the bacterial metabolome were investigated both by intracellular fingerprint and extracellular footprint analysis. The metabolic fingerprints and footprints of bacterial cultures were affected in a distinct manner and provided complementary information regarding intracellular and extracellular targets such as protein synthesis, DNA and cell wall. While cell cultures affected by antibiotics that act on intracellular targets showed class-specific fingerprints, the metabolic footprints differed significantly only when antibiotics that target the cell wall were applied. In addition, using a training set of E. coli fingerprints extracted after treatment with different antibiotic classes, the mode of action of streptomycin, tetracycline and carbenicillin could be correctly predicted. CONCLUSION: The metabolic profiles of E. coli treated with antibiotics with intracellular and extracellular targets could be separated in fingerprint and footprint analysis, respectively and provided complementary information. Based on the specific fingerprints obtained for different classes of antibiotics, the mode of action of several antibiotics could be predicted. The same classification approach should be applicable to studies of other pathogenic bacteria.
Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Carbenicilina/farmacologia , Descoberta de Drogas , Escherichia coli/classificação , Testes de Sensibilidade Microbiana , Análise Multivariada , Projetos Piloto , Estreptomicina/farmacologia , Tetraciclina/farmacologiaRESUMO
OBJECTIVES: In this study, we established and validated a time-resolved three-dimensional phase-contrast magnetic resonance imaging method (4D PC MRI) on a 9.4 T small-animal MRI system. Herein we present the feasibility of 4D PC MRI in terms of qualitative and quantitative flow pattern analysis in mice with transverse aortic constriction (TAC). MATERIALS AND METHODS: 4D PC FLASH images of a flow phantom and mouse heart were acquired at 9.4 T using a four-point phase-encoding scheme. The method was compared with slice-selective PC FLASH and ultrasound using Bland-Altman analysis. Advanced 3D streamlines were visualized utilizing Voreen volume-rendering software. RESULTS: In vitro, 4D PC MRI flow profiles showed the transition between laminar and turbulent flow with increasing velocities. In vivo, 4D PC MRI data of the ascending aorta and the pulmonary artery were confirmed by ultrasound, resulting in linear regressions of R (2) > 0.93. Magnitude- and direction-encoded streamlines differed substantially pre- and post-TAC surgery. CONCLUSIONS: 4D PC MRI is a feasible tool for in vivo velocity measurements on high-field small-animal scanners. Similar to clinical measurement, this method provides a complete spatially and temporally resolved dataset of the murine cardiovascular blood flow and allows for three-dimensional flow pattern analysis.
Assuntos
Estenose da Valva Aórtica/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Insuficiência Cardíaca/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Animais , Aorta , Estenose da Valva Aórtica/diagnóstico por imagem , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/instrumentação , Camundongos , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , UltrassonografiaRESUMO
BACKGROUND: Different non-invasive real-time imaging techniques have been developed over the last decades to study bacterial pathogenic mechanisms in mouse models by following infections over a time course. In vivo investigations of bacterial infections previously relied mostly on bioluminescence imaging (BLI), which is able to localize metabolically active bacteria, but provides no data on the status of the involved organs in the infected host organism. In this study we established an in vivo imaging platform by magnetic resonance imaging (MRI) for tracking bacteria in mouse models of infection to study infection biology of clinically relevant bacteria. RESULTS: We have developed a method to label Gram-positive and Gram-negative bacteria with iron oxide nano particles and detected and pursued these with MRI. The key step for successful labeling was to manipulate the bacterial surface charge by producing electro-competent cells enabling charge interactions between the iron particles and the cell wall. Different particle sizes and coatings were tested for their ability to attach to the cell wall and possible labeling mechanisms were elaborated by comparing Gram-positive and -negative bacterial characteristics. With 5-nm citrate-coated particles an iron load of 0.015 ± 0.002 pg Fe/bacterial cell was achieved for Staphylococcus aureus. In both a subcutaneous and a systemic infection model induced by iron-labeled S. aureus bacteria, high resolution MR images allowed for bacterial tracking and provided information on the morphology of organs and the inflammatory response. CONCLUSION: Labeled with iron oxide particles, in vivo detection of small S. aureus colonies in infection models is feasible by MRI and provides a versatile tool to follow bacterial infections in vivo. The established cell labeling strategy can easily be transferred to other bacterial species and thus provides a conceptual advance in the field of molecular MRI.
Assuntos
Escherichia coli/metabolismo , Imageamento por Ressonância Magnética , Staphylococcus aureus/metabolismo , Animais , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos Férricos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Ferro/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Microscopia de Fluorescência , Nanopartículas/química , Fagocitose/efeitos dos fármacos , Reprodutibilidade dos Testes , Coloração e Rotulagem , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestruturaRESUMO
Osteomyelitis is a serious bone infection typically caused by Staphylococcus aureus. The pathogenesis of osteomyelitis remains poorly understood, mainly for lack of experimental models that closely mimic human disease. We describe a novel murine model of metastatic chronic osteomyelitis initiated after intravenous inoculation of S. aureus microorganisms. The bacteria entered bones through the bloodstream and, after an acute phase with progressive growth (first 2 weeks after infection), they remained at constant numbers for up to 56 days (chronic phase). Clinical signs of illness and systemic inflammation were apparent only during the acute phase. Bone destruction and remodeling processes were readily detectable by magnetic resonance and X-ray imaging 3 weeks after infection, and high levels of bone deformation were observed during the chronic phase. Histological examination of infected bones demonstrated suppurative inflammation with foci of intense bacterial multiplication and necrosis during acute infection and osteoclastic resorption accompanied by new woven bone formation during chronic infection. Transmission electron microscopy revealed S. aureus microorganisms forming microcolonies within the nonmineralized collagen matrix or located intracellularly within neutrophils. In summary, our mouse model of staphylococcal hematogenous osteomyelitis precisely reproduces most features of the human disease. Although the extent of lesions in the chronic phase was subject to variation, this model is ideal for testing and monitoring novel treatment modalities via noninvasive imaging.
Assuntos
Osteomielite/microbiologia , Osteomielite/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/fisiologia , Animais , Fenômenos Biomecânicos , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Úmero/diagnóstico por imagem , Úmero/microbiologia , Úmero/patologia , Imageamento Tridimensional , Inflamação/patologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Osteomielite/fisiopatologia , Radiografia , Infecções Estafilocócicas/fisiopatologia , Tíbia/diagnóstico por imagem , Tíbia/microbiologia , Tíbia/patologia , Tíbia/ultraestrutura , Fatores de TempoRESUMO
BACKGROUND: To overcome flow and electrocardiogram-trigger artifacts in cardiovascular magnetic resonance (CMR), we have implemented a cardiac and respiratory self-gated cine ultra-short echo time (UTE) sequence. We have assessed its performance in healthy mice by comparing the results with those obtained with a self-gated cine fast low angle shot (FLASH) sequence and with echocardiography. METHODS: 2D self-gated cine UTE (TE/TR = 314 µs/6.2 ms, resolution: 129 × 129 µm, scan time per slice: 5 min 5 sec) and self-gated cine FLASH (TE/TR = 3 ms/6.2 ms, resolution: 129 × 129 µm, scan time per slice: 4 min 49 sec) images were acquired at 9.4 T. Volume of the left and right ventricular (LV, RV) myocardium as well as the end-diastolic and -systolic volume was segmented manually in MR images and myocardial mass, stroke volume (SV), ejection fraction (EF) and cardiac output (CO) were determined. Statistical differences were analyzed by using Student t test and Bland-Altman analyses. RESULTS: Self-gated cine UTE provided high quality images with high contrast-to-noise ratio (CNR) also for the RV myocardium (CNRblood-myocardium = 25.5 ± 7.8). Compared to cine FLASH, susceptibility, motion, and flow artifacts were considerably reduced due to the short TE of 314 µs. The aortic valve was clearly discernible over the entire cardiac cycle. Myocardial mass, SV, EF and CO determined by self-gated UTE were identical to the values measured with self-gated FLASH and showed good agreement to the results obtained by echocardiography. CONCLUSIONS: Self-gated UTE allows for robust measurement of cardiac parameters of diagnostic interest. Image quality is superior to self-gated FLASH, rendering the method a powerful alternative for the assessment of cardiac function at high magnetic fields.
Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Frequência Cardíaca , Imagem Cinética por Ressonância Magnética/métodos , Taxa Respiratória , Função Ventricular Esquerda , Função Ventricular Direita , Animais , Artefatos , Ecocardiografia Doppler , Feminino , Interpretação de Imagem Assistida por Computador , Camundongos Endogâmicos C57BL , Modelos Animais , Contração Miocárdica , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Volume Sistólico , Fatores de TempoRESUMO
BACKGROUND: The inflammatory tumor microenvironment (TME) is formed by various immune cells, being closely associated with tumorigenesis. Especially, the interaction between tumor-infiltrating T-cells and macrophages has a crucial impact on tumor progression and metastatic spread. The purpose of this study was to investigate whether oscillating-gradient diffusion-weighted MRI (OGSE-DWI) enables a cell size-based discrimination between different cell populations of the TME. METHODS: Sine-shaped OGSE-DWI was combined with the Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED) approach to measure microscale diffusion distances, here relating to cell sizes. The accuracy of IMPULSED-derived cell radii was evaluated using in vitro spheroid models, consisting of either pure cancer cells, macrophages, or T-cells. Subsequently, in vivo experiments aimed to assess changes within the TME and its specific immune cell composition in syngeneic murine breast cancer models with divergent degrees of malignancy (4T1, 67NR) during tumor progression, clodronate liposome-mediated depletion of macrophages, and immune checkpoint inhibitor (ICI) treatment. Ex vivo analysis of IMPULSED-derived cell radii was conducted by immunohistochemical wheat germ agglutinin staining of cell membranes, while intratumoral immune cell composition was analyzed by CD3 and F4/80 co-staining. RESULTS: OGSE-DWI detected mean cell radii of 8.8±1.3 µm for 4T1, 8.2±1.4 µm for 67NR, 13.0±1.7 for macrophage, and 3.8±1.8 µm for T-cell spheroids. While T-cell infiltration during progression of 4T1 tumors was observed by decreasing mean cell radii from 9.7±1.0 to 5.0±1.5 µm, increasing amount of intratumoral macrophages during progression of 67NR tumors resulted in increasing mean cell radii from 8.9±1.2 to 12.5±1.1 µm. After macrophage depletion, mean cell radii decreased from 6.3±1.7 to 4.4±0.5 µm. T-cell infiltration after ICI treatment was captured by decreasing mean cell radii in both tumor models, with more pronounced effects in the 67NR tumor model. CONCLUSIONS: OGSE-DWI provides a versatile tool for non-invasive profiling of the inflammatory TME by assessing the dominating cell type T-cells or macrophages.
Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Camundongos , Animais , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Linfócitos T , MacrófagosRESUMO
Viral myocarditis is pathologically associated with RNA viruses such as coxsackievirus B3 (CVB3), or more recently, with SARS-CoV-2, but despite intensive research, clinically proven treatment is limited. Here, by use of a transgenic mouse strain (TG) containing a CVB3ΔVP0 genome we unravel virus-mediated cardiac pathophysiological processes in vivo and in vitro. Cardiac function, pathologic ECG alterations, calcium homeostasis, intracellular organization and gene expression were significantly altered in transgenic mice. A marked alteration of mitochondrial structure and gene expression indicates mitochondrial impairment potentially contributing to cardiac contractile dysfunction. An extended picture on viral myocarditis emerges that may help to develop new treatment strategies and to counter cardiac failure.
Assuntos
COVID-19 , Infecções por Coxsackievirus , Miocardite , Viroses , Camundongos , Animais , Camundongos Transgênicos , Enterovirus Humano B , SARS-CoV-2RESUMO
Metabolomics has become an important tool to study host-pathogen interactions and to discover potential novel therapeutic targets. In an attempt to develop a better understanding of the process of pathogenesis and the associated host response we have used a quantitative (1)H NMR approach to study the metabolic response to different bacterial infections. Here we describe that metabolic changes found in serum of mice that were infected with Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli and Pseudomonas aeruginosa can distinguish between infections caused by Gram-positive and Gram-negative bacterial strains. By combining the results of the mouse study with those of bacterial footprinting culture experiments, bacterially secreted metabolites could be identified as potential bacterium-specific biomarkers for P. aeruginosa infections but not for the other strains. Multivariate statistical analysis revealed correlations between metabolic, cytokine and physiological responses. In TLR4 and TLR2 knockout mice, host-response pathway correlated metabolites could be identified and allowed us for the first time to distinguish between bacterial- and host-induced metabolic changes. Since Gram-positive and Gram-negative bacteria activate different receptor pathways in the host, our results suggest that it may become possible in the future to use a metabolomics approach to improve on current clinical microbiology diagnostic methods.
Assuntos
Infecções por Escherichia coli/metabolismo , Metaboloma , Infecções Pneumocócicas/metabolismo , Infecções por Pseudomonas/metabolismo , Infecções Estafilocócicas/metabolismo , Animais , Citocinas/sangue , Modelos Animais de Doenças , Escherichia coli/fisiologia , Infecções por Escherichia coli/imunologia , Líquido Extracelular/metabolismo , Interações Hospedeiro-Patógeno , Líquido Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Pneumocócicas/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Streptococcus pneumoniae/fisiologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Fatores de Virulência/fisiologiaRESUMO
At high magnetic fields diagnostic proton MRI of the lung is problematic, because of fast T2* relaxation. The application of superparamagnetic contrast agents and the exploitation of the corresponding T2* effect is inefficient with conventional MRI methods, which limits the early detection of lung diseases. However, a simple theoretical treatment shows that in the lung, by the use of ultra-short echo time sequences, T2* effects can be neglected while T(1) shortening effects can be used for signal detection. In our study, we have applied a theoretically and experimentally optimized 3D ultra-short echo time sequence to lung phantoms and to a mouse model of lung inflammation, which was induced by systemic bacterial infection. Following the systemic application of very small superparamagnetic iron oxide nanoparticles, a significant signal increase in the lung of infected animals was detected already at 24 h postinfection, compared to control mice (17%, P < 0.001). Iron accumulation in the lung parenchyma as consequence of the host immune response was histologically confirmed. By conventional T2*- and T(2)-weighted imaging, neither structural changes nor formation of substantial edema were observed.
Assuntos
Algoritmos , Dextranos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Pneumonia Estafilocócica/patologia , Animais , Meios de Contraste , Diagnóstico Precoce , Feminino , Aumento da Imagem/métodos , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The process of mutarotation of sugars caused by a balanced reaction between their corresponding α and ß isomers, has been known for almost 200â¯years. Still, it remains essential in modern biochemical research, as enzymatic reactions catalyzed by mutarotases are crucial for various pathways in the energy metabolism. In our study a fast magnetic resonance technique based on chemical exchange saturation transfer (CEST) line scanning (LS) was implemented as a method to measure mutarotation kinetics on a 9.4â¯T small animal MRI scanner. As proof of concept, the isomeric conversion of two hexoses (glucose and galactose) and pentoses (xylose and arabinose) was investigated in an aqueous solution over time. The technique allowed for ultrafast data acquisition without the implementation of complicated encoding schemes and acceleration procedures. Thus, CEST LS provided complete CEST spectra with a frequency step size of 19.6â¯Hz in less than one minute. For the mutarotation analysis, CEST spectra were acquired over a time duration of four hours and analyzed with four established CEST quantification approaches - based on either asymmetry of CEST spectra or a multi-pool Lorentzian fit. The isomer ratios of the different sugars at equilibrium were determined with an overall accuracy of 94â¯%, using an adapted 2-side chemical exchange (CE) model. The estimated mutarotation rate constants at 22⯰C were in good agreement with conventionally measured reference values, derived from optical and spectroscopic techniques.
Assuntos
Imageamento por Ressonância Magnética , Água , Animais , Cinética , Imageamento por Ressonância Magnética/métodos , Açúcares , Água/químicaRESUMO
Staphylococcus aureus-induced infective endocarditis (IE) is a life-threatening disease. Differences in virulence between distinct S. aureus strains, which are partly based on the molecular mechanisms during bacterial adhesion, are not fully understood. Yet, distinct molecular or elemental patterns, occurring during specific steps in the adhesion process, may help to identify novel targets for accelerated diagnosis or improved treatment. Here, we use laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of post-mortem tissue slices of an established mouse model of IE to obtain fingerprints of element distributions in infected aortic valve tissue. Three S. aureus strains with different virulence due to deficiency in distinct adhesion molecules (fibronectin-binding protein A and staphylococcal protein A) were used to assess strain-specific patterns. Data analysis was performed by t-distributed stochastic neighbor embedding (t-SNE) of mass spectrometry imaging data, using manual reference tissue classification in histological specimens. This procedure allowed for obtaining distinct element patterns in infected tissue for all three bacterial strains and for comparing those to patterns observed in healthy mice or after sterile inflammation of the valve. In tissue from infected mice, increased concentrations of calcium, zinc, and magnesium were observed compared to noninfected mice. Between S. aureus strains, pronounced variations were observed for manganese. The presented approach is sensitive for detection of S. aureus infection. For strain-specific tissue characterization, however, further improvements such as establishing a database with elemental fingerprints may be required.