Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 9(12): eadd6167, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947621

RESUMO

Liquid-phase chemical exfoliation can achieve industry-scale production of two-dimensional (2D) materials for a wide range of applications. However, many 2D materials with potential applications in quantum technologies often fail to leave the laboratory setting because of their air sensitivity and depreciation of physical performance after chemical processing. We report a simple chemical exfoliation method to create a stable, aqueous, surfactant-free, superconducting ink containing phase-pure 1T'-WS2 monolayers that are isostructural to the air-sensitive topological insulator 1T'-WTe2. The printed film is metallic at room temperature and superconducting below 7.3 kelvin, shows strong anisotropic unconventional superconducting behavior with an in-plane and out-of-plane upper critical magnetic field of 30.1 and 5.3 tesla, and is stable at ambient conditions for at least 30 days. Our results show that chemical processing can make nontrivial 2D materials that were formerly only studied in laboratories commercially accessible.

2.
Bioengineering (Basel) ; 7(4)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092121

RESUMO

Mineralized biomaterials have been demonstrated to enhance bone regeneration compared to their non-mineralized analogs. As non-mineralized scaffolds do not perform as well as mineralized scaffolds in terms of their mechanical and surface properties, osteoconductivity and osteoinductivity, mineralization strategies are promising methods in the development of functional biomimetic bone scaffolds. In particular, the mineralization of three-dimensional (3D) scaffolds has become a promising approach for guided bone regeneration. In this paper, we review the major approaches used for mineralizing tissue engineering constructs. The resulting scaffolds provide minerals chemically similar to the inorganic component of natural bone, carbonated apatite, Ca5(PO4,CO3)3(OH). In addition, we discuss the characterization techniques that are used to characterize the mineralized scaffolds, such as the degree of mineralization, surface characteristics, mechanical properties of the scaffolds, and the chemical composition of the deposited minerals. In vitro cell culture studies show that the mineralized scaffolds are highly osteoinductive. We also summarize, based on literature examples, the applications of 3D mineralized constructs, as well as the rationale behind their use. The mineralized scaffolds have improved bone regeneration in animal models due to the enhanced mechanical properties and cell recruitment capability making them a preferable option for bone tissue engineering over non-mineralized scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA