Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 184(12): 3163-3177.e21, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964209

RESUMO

Cancer cell genetic variability and similarity to host cells have stymied development of broad anti-cancer therapeutics. Our innate immune system evolved to clear genetically diverse pathogens and limit host toxicity; however, whether/how innate immunity can produce similar effects in cancer is unknown. Here, we show that human, but not murine, neutrophils release catalytically active neutrophil elastase (ELANE) to kill many cancer cell types while sparing non-cancer cells. ELANE proteolytically liberates the CD95 death domain, which interacts with histone H1 isoforms to selectively eradicate cancer cells. ELANE attenuates primary tumor growth and produces a CD8+T cell-mediated abscopal effect to attack distant metastases. Porcine pancreatic elastase (ELANE homolog) resists tumor-derived protease inhibitors and exhibits markedly improved therapeutic efficacy. Altogether, our studies suggest that ELANE kills genetically diverse cancer cells with minimal toxicity to non-cancer cells, raising the possibility of developing it as a broad anti-cancer therapy.


Assuntos
Carcinogênese/patologia , Elastase de Leucócito/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Regulação Alostérica/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinogênese/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Catiônica de Eosinófilo/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Neoplasias/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Elastase Pancreática/metabolismo , Inibidores de Proteases/farmacologia , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Suínos , Receptor fas/química , Receptor fas/metabolismo
2.
J Pharmacol Exp Ther ; 389(3): 289-300, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38580449

RESUMO

Invasive bacterial infections and sepsis are persistent global health concerns, complicated further by the escalating threat of antibiotic resistance. Over the past 40 years, collaborative endeavors to improve the diagnosis and critical care of septic patients have improved outcomes, yet grappling with the intricate immune dysfunction underlying the septic condition remains a formidable challenge. Anti-inflammatory interventions that exhibited promise in murine models failed to manifest consistent survival benefits in clinical studies through recent decades. Novel therapeutic approaches that target bacterial virulence factors, for example with monoclonal antibodies, aim to thwart pathogen-driven damage and restore an advantage to the immune system. A pioneering technology addressing this challenge is biomimetic nanoparticles-a therapeutic platform featuring nanoscale particles enveloped in natural cell membranes. Borne from the quest for a durable drug delivery system, the original red blood cell-coated nanoparticles showcased a broad capacity to absorb bacterial and environmental toxins from serum. Tailoring the membrane coating to immune cell sources imparts unique characteristics to the nanoparticles suitable for broader application in infectious disease. Their capacity to bind both inflammatory signals and virulence factors assembles the most promising sepsis therapies into a singular, pathogen-agnostic therapeutic. This review explores the ongoing work on immune cell-coated nanoparticle therapeutics for infection and sepsis. SIGNIFICANCE STATEMENT: Invasive bacterial infections and sepsis are a major global health problem made worse by expanding antibiotic resistance, meaning better treatment options are urgently needed. Biomimetic cell-membrane-coated nanoparticles are an innovative therapeutic platform that deploys a multifaceted mechanism to action to neutralize microbial virulence factors, capture endotoxins, and bind excessive host proinflammatory cytokines, seeking to reduce host tissue injury, aid in microbial clearance, and improve patient outcomes.


Assuntos
Infecções Bacterianas , Materiais Biomiméticos , Nanomedicina , Sepse , Humanos , Animais , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/microbiologia , Nanomedicina/métodos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/imunologia , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/uso terapêutico , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Biomimética/métodos , Nanopartículas
3.
Brain ; 141(1): 132-147, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228214

RESUMO

Oestrogen treatments are neuroprotective in a variety of neurodegenerative disease models. Selective oestrogen receptor modifiers are needed to optimize beneficial effects while minimizing adverse effects to achieve neuroprotection in chronic diseases. Oestrogen receptor beta (ERβ) ligands are potential candidates. In the multiple sclerosis model chronic experimental autoimmune encephalomyelitis, ERβ-ligand treatment is neuroprotective, but mechanisms underlying this neuroprotection remain unclear. Specifically, whether there are direct effects of ERβ-ligand on CD11c+ microglia, myeloid dendritic cells or macrophages in vivo during disease is unknown. Here, we generated mice with ERβ deleted from CD11c+ cells to show direct effects of ERβ-ligand treatment in vivo on these cells to mediate neuroprotection during experimental autoimmune encephalomyelitis. Further, we use bone marrow chimeras to show that ERβ in peripherally derived myeloid cells, not resident microglia, are the CD11c+ cells mediating this protection. CD11c+ dendritic cell and macrophages isolated from the central nervous system of wild-type experimental autoimmune encephalomyelitis mice treated with ERβ-ligand expressed less iNOS and T-bet, but more IL-10, and this treatment effect was lost in mice with specific deletion of ERβ in CD11c+ cells. Also, we extend previous reports of ERβ-ligand’s ability to enhance remyelination through a direct effect on oligodendrocytes by showing that the immunomodulatory effect of ERβ-ligand acting on CD11c+ cells is necessary to permit the maturation of oligodendrocytes. Together these results demonstrate that targeting ERβ signalling pathways in CD11c+ myeloid cells is a novel strategy for regulation of the innate immune system in neurodegenerative diseases. To our knowledge, this is the first report showing how direct effects of a candidate neuroprotective treatment on two distinct cell lineages (bone marrow derived myeloid cells and oligodendrocytes) can have complementary neuroprotective effects in vivo.awx315media15688130498001.


Assuntos
Antígenos CD11/metabolismo , Encefalomielite Autoimune Experimental/terapia , Receptor beta de Estrogênio/metabolismo , Macrófagos/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transplante de Medula Óssea/métodos , Antígenos CD11/genética , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Receptor beta de Estrogênio/genética , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Ligantes , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteína Básica da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidade , Óxido Nítrico Sintase Tipo II/metabolismo , Ovariectomia , Fragmentos de Peptídeos/toxicidade
4.
Adv Nanobiomed Res ; 3(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37151210

RESUMO

The highly multidrug-resistant (MDR) Gram-negative bacterial pathogen Acinetobacter baumannii is a top global health priority where an effective vaccine could protect susceptible populations and limit resistance acquisition. Outer membrane vesicles (OMVs) shed from Gram-negative bacteria are enriched with virulence factors and membrane lipids but heterogeneous in size and cargo. We report a vaccine platform combining precise and replicable nanoparticle technology with immunogenic A. baumannii OMVs (Ab-OMVs). Gold nanoparticle cores coated with Ab-OMVs (Ab-NPs) induced robust IgG titers in rabbits that enhanced human neutrophil opsonophagocytic killing and passively protected against lethal A. baumannii sepsis in mice. Active Ab-NP immunization in mice protected against sepsis and pneumonia, accompanied by B cell recruitment to draining lymph nodes, activation of dendritic cell markers, improved splenic neutrophil responses, and mitigation of proinflammatory cytokine storm. Nanoparticles are an efficient and efficacious platform for OMV vaccine delivery against A. baumannii and perhaps other high-priority MDR pathogens.

5.
Nat Nanotechnol ; 16(12): 1394-1402, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34764452

RESUMO

Activating CD8+ T cells by antigen cross-presentation is remarkably effective at eliminating tumours. Although this function is traditionally attributed to dendritic cells, tumour-associated macrophages (TAMs) can also cross-present antigens. TAMs are the most abundant tumour-infiltrating leukocyte. Yet, TAMs have not been leveraged to activate CD8+ T cells because mechanisms that modulate their ability to cross-present antigens are incompletely understood. Here we show that TAMs harbour hyperactive cysteine protease activity in their lysosomes, which impedes antigen cross-presentation, thereby preventing CD8+ T cell activation. We developed a DNA nanodevice (E64-DNA) that targets the lysosomes of TAMs in mice. E64-DNA inhibits the population of cysteine proteases that is present specifically inside the lysosomes of TAMs, improves their ability to cross-present antigens and attenuates tumour growth via CD8+ T cells. When combined with cyclophosphamide, E64-DNA showed sustained tumour regression in a triple-negative-breast-cancer model. Our studies demonstrate that DNA nanodevices can be targeted with organelle-level precision to reprogram macrophages and achieve immunomodulation in vivo.


Assuntos
DNA/química , Lisossomos/metabolismo , Nanopartículas/química , Neoplasias/patologia , Macrófagos Associados a Tumor/metabolismo , Animais , Antígenos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Terapia Combinada , Apresentação Cruzada/imunologia , Ciclofosfamida , Feminino , Humanos , Imunidade , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Proteômica
6.
Front Endocrinol (Lausanne) ; 12: 698621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394003

RESUMO

Obesity affects nearly one billion globally and can lead to life-threatening sequelae. Consequently, there is an urgent need for novel therapeutics. We have previously shown that laminin, alpha 4 (Lama4) knockout in mice leads to resistance to adipose tissue accumulation; however, the relationship between LAMA4 and obesity in humans has not been established. In this study we measured laminin-α chain and collagen mRNA expression in the subcutaneous white adipose tissue (sWAT) of mice placed on chow (RCD) or 45% high fat diet (HFD) for 8 weeks, and also in HFD mice then placed on a "weight loss" regimen (8 weeks HFD followed by 6 weeks RCD). To assess extracellular matrix (ECM) components in humans with obesity, laminin subunit alpha mRNA and protein expression was measured in sWAT biopsies of female control subjects (BMI<30) or subjects with obesity undergoing bariatric surgery at the University of Chicago Medical Center (BMI>35) both before and three months after surgery. Lama4 was significantly higher in sWAT of HFD compared to RCD mice at both the RNA and protein level (p<0.001, p<0.05 respectively). sWAT from human subjects with obesity also showed significantly higher LAMA4 mRNA (p<0.01) and LAMA4 protein expression (p<0.05) than controls. Interestingly, even though LAMA4 expression was increased in both humans and murine models of obesity, no significant difference in Lama4 or LAMA4 expression was detected following short-term weight loss in either mouse or human samples, respectively. From these results we propose a significant association between obesity and elevated LAMA4 expression in humans, as well as in mouse models of obesity. Further studies should clarify the mechanisms underlying this association to target LAMA4 effectively as a potential therapy for obesity.


Assuntos
Laminina/genética , Obesidade/genética , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/patologia , Regulação para Cima/genética , Adulto Jovem
7.
Endocrinology ; 161(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32770234

RESUMO

The Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) is a nuclear corepressor, regulating the transcriptional activity of many transcription factors critical for metabolic processes. While the importance of the role of SMRT in the adipocyte has been well-established, our comprehensive understanding of its in vivo function in the context of homeostatic maintenance is limited due to contradictory phenotypes yielded by prior generalized knockout mouse models. Multiple such models agree that SMRT deficiency leads to increased adiposity, although the effects of SMRT loss on glucose tolerance and insulin sensitivity have been variable. We therefore generated an adipocyte-specific SMRT knockout (adSMRT-/-) mouse to more clearly define the metabolic contributions of SMRT. In doing so, we found that SMRT deletion in the adipocyte does not cause obesity-even when mice are challenged with a high-fat diet. This suggests that adiposity phenotypes of previously described models were due to effects of SMRT loss beyond the adipocyte. However, an adipocyte-specific SMRT deficiency still led to dramatic effects on systemic glucose tolerance and adipocyte insulin sensitivity, impairing both. This metabolically deleterious outcome was coupled with a surprising immune phenotype, wherein most genes differentially expressed in the adipose tissue of adSMRT-/- mice were upregulated in pro-inflammatory pathways. Flow cytometry and conditioned media experiments demonstrated that secreted factors from knockout adipose tissue strongly informed resident macrophages to develop a pro-inflammatory, MMe (metabolically activated) phenotype. Together, these studies suggest a novel role for SMRT as an integrator of metabolic and inflammatory signals to maintain physiological homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Metabolismo Energético/genética , Macrófagos/fisiologia , Correpressor 2 de Receptor Nuclear/fisiologia , Adipócitos/fisiologia , Tecido Adiposo/citologia , Animais , Homeostase/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Correpressor 2 de Receptor Nuclear/genética , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Especificidade de Órgãos/genética , Fenótipo
8.
Cell Rep ; 20(13): 3149-3161, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954231

RESUMO

During obesity, adipose tissue macrophages (ATMs) adopt a metabolically activated (MMe) phenotype. However, the functions of MMe macrophages are poorly understood. Here, we combine proteomic and functional methods to demonstrate that, in addition to potentiating inflammation, MMe macrophages promote dead adipocyte clearance through lysosomal exocytosis. We identify NADPH oxidase 2 (NOX2) as a driver of the inflammatory and adipocyte-clearing properties of MMe macrophages and show that, compared to wild-type, Nox2-/- mice exhibit a time-dependent metabolic phenotype during diet-induced obesity. After 8 weeks of high-fat feeding, Nox2-/- mice exhibit attenuated ATM inflammation and mildly improved glucose tolerance. After 16 weeks of high-fat feeding, Nox2-/- mice develop severe insulin resistance, hepatosteatosis, and visceral lipoatrophy characterized by dead adipocyte accumulation and defective ATM lysosomal exocytosis, a phenotype reproduced in myeloid cell-specific Nox2-/- mice. Collectively, our findings suggest that MMe macrophages perform detrimental and beneficial functions whose contribution to metabolic phenotypes during obesity is determined by disease progression.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Macrófagos/metabolismo , Obesidade/etiologia , Animais , Humanos , Camundongos
9.
J Neuroimmunol ; 274(1-2): 53-61, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25005117

RESUMO

Chemokine (C-C motif) ligand 2 (CCL2), initially identified as monocyte chemoattractant protein-1 (MCP-1), recruits immune cells to the central nervous system (CNS) during autoimmune inflammation. CCL2 can be expressed by multiple cell types, but which cells are responsible for CCL2 function during acute and chronic phases of autoimmune disease is not known. We determined the role of CCL2 in astrocytes in vivo during experimental autoimmune encephalomyelitis (EAE) by using Cre-loxP gene deletion. Mice with a conditional gene deletion of CCL2 from astrocytes had less severe EAE late in disease while having a similar incidence and severity of disease at onset as compared to wild type (WT) control littermates. EAE mice devoid of CCL2 in astrocytes had less macrophage and T cell inflammation in the white matter of the spinal cord and less diffuse activation of astrocytes and microglia in both white and gray matter as well as less axonal loss and demyelination, compared to WT littermates. These findings demonstrate that CCL2 in astrocytes plays an important role in the continued recruitment of immune cells and activation of glial cells in the CNS during chronic EAE, thereby suggesting a novel cell specific target for neuroprotective treatments of chronic neuroinflammatory diseases.


Assuntos
Astrócitos/imunologia , Quimiocina CCL2/imunologia , Encefalomielite Autoimune Experimental/imunologia , Animais , Quimiocina CCL2/genética , Doença Crônica , Doenças Desmielinizantes/imunologia , Encefalomielite Autoimune Experimental/genética , Feminino , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Microglia/imunologia , Bainha de Mielina/imunologia , Medula Espinal/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA