RESUMO
Patient-derived induced pluripotent stem cells (iPSCs) hold great promise for autologous cell replacement. However, for many inherited diseases, treatment will likely require genetic repair pre-transplantation. Genome editing technologies are useful for this application. The purpose of this study was to develop CRISPR-Cas9-mediated genome editing strategies to target and correct the three most common types of disease-causing variants in patient-derived iPSCs: (1) exonic, (2) deep intronic, and (3) dominant gain of function. We developed a homology-directed repair strategy targeting a homozygous Alu insertion in exon 9 of male germ cell-associated kinase (MAK) and demonstrated restoration of the retinal transcript and protein in patient cells. We generated a CRISPR-Cas9-mediated non-homologous end joining (NHEJ) approach to excise a major contributor to Leber congenital amaurosis, the IVS26 cryptic-splice mutation in CEP290, and demonstrated correction of the transcript and protein in patient iPSCs. Lastly, we designed allele-specific CRISPR guides that selectively target the mutant Pro23His rhodopsin (RHO) allele, which, following delivery to both patient iPSCs in vitro and pig retina in vivo, created a frameshift and premature stop that would prevent transcription of the disease-causing variant. The strategies developed in this study will prove useful for correcting a wide range of genetic variants in genes that cause inherited retinal degeneration.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Marcação de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Retiniana/genética , Transplante de Células-Tronco , Alelos , Animais , Linhagem Celular , Ordem dos Genes , Loci Gênicos , Terapia Genética , Vetores Genéticos/genética , Recombinação Homóloga , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Íntrons , Mutação , Proteínas Serina-Treonina Quinases/genética , RNA Guia de Cinetoplastídeos , Degeneração Retiniana/terapia , Transplante de Células-Tronco/métodos , Transplante AutólogoRESUMO
BACKGROUND: Autosomal dominant radial drusen (ADRD), also termed Malattia Leventinese and Doyne honeycomb retinal dystrophy, causes early-onset vision loss because of mutation in EFEMP1. Drusen in an exceedingly rare ADRD human donor eye was compared with eyes affected with age-related macular degeneration (AMD). This study also elucidated whether variations in high-risk AMD genotypes modify phenotypic severity of ADRD. METHODS: Morphologic and histochemical analyses of drusen in one ADRD donor and seven AMD donors. Evaluation of complement factor H (CFH) and ARMS2/HTRA1 alleles in a cohort of 25 subjects with ADRD. RESULTS: Autosomal dominant radial drusen had unique onion skin-like lamination but otherwise shared many compositional features with hard, nodular drusen and/or diffuse soft drusen with basal deposits. Autosomal dominant radial drusen also possessed collagen type IV, an extracellular matrix protein that is absent in age-related drusen. Antibodies directed against the membrane attack complex showed robust labeling of ADRD. Vitronectin and amyloid P were present in drusen of both types. High-risk alleles in the CFH and ARMS2/HTRA1 genes were not associated with increasing ADRD severity. CONCLUSION: Drusen from ADRD and AMD exhibit overlap of some major constituents, but ADRD exhibit distinct alterations in the extracellular matrix that are absent in AMD.
Assuntos
Fator H do Complemento/genética , Distrofias Hereditárias da Córnea/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Drusas Retinianas/genética , Serina Endopeptidases/genética , Degeneração Macular Exsudativa/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Colágeno Tipo IV/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Técnicas de Genotipagem , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Masculino , Pessoa de Meia-Idade , Drusas do Disco Óptico/congênito , Drusas Retinianas/metabolismo , Drusas Retinianas/patologia , Componente Amiloide P Sérico/metabolismo , Doadores de Tecidos , Vitronectina/metabolismo , Degeneração Macular Exsudativa/metabolismo , Degeneração Macular Exsudativa/patologia , Adulto JovemRESUMO
Retinitis pigmentosa (RP) is a genetically heterogeneous heritable disease characterized by apoptotic death of photoreceptor cells. We used exome sequencing to identify a homozygous Alu insertion in exon 9 of male germ cell-associated kinase (MAK) as the cause of disease in an isolated individual with RP. Screening of 1,798 unrelated RP patients identified 20 additional probands homozygous for this insertion (1.2%). All 21 affected probands are of Jewish ancestry. MAK encodes a kinase involved in the regulation of photoreceptor-connecting cilium length. Immunohistochemistry of human donor tissue revealed that MAK is expressed in the inner segments, cell bodies, and axons of rod and cone photoreceptors. Several isoforms of MAK that result from alternative splicing were identified. Induced pluripotent stem cells were derived from the skin of the proband and a patient with non-MAK-associated RP (RP control). In the RP control individual, we found that a transcript lacking exon 9 was predominant in undifferentiated cells, whereas a transcript bearing exon 9 and a previously unrecognized exon 12 predominated in cells that were differentiated into retinal precursors. However, in the proband with the Alu insertion, the developmental switch to the MAK transcript bearing exons 9 and 12 did not occur. In addition to showing the use of induced pluripotent stem cells to efficiently evaluate the pathogenicity of specific mutations in relatively inaccessible tissues like retina, this study reveals algorithmic and molecular obstacles to the discovery of pathogenic insertions and suggests specific changes in strategy that can be implemented to more fully harness the power of sequencing technologies.
Assuntos
Cílios/genética , Éxons/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Análise de Sequência de DNA , Elementos Alu/genética , Sequência de Aminoácidos , Biomarcadores/metabolismo , Diferenciação Celular , Genealogia e Heráldica , Humanos , Isoenzimas/metabolismo , Judeus/genética , Dados de Sequência Molecular , Mutagênese Insercional/genética , Especificidade de Órgãos , Mutação Puntual/genética , Proteínas Serina-Treonina Quinases/química , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/complicações , Degeneração Retiniana/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/complicaçõesRESUMO
Introduction: X-linked retinoschisis (XLRS) is an inherited retinal disease (IRD) caused by pathogenic mutations in the retinoschisin gene, RS1. Affected individuals develop retinal layer separation, leading to loss of visual acuity (VA). Several XLRS gene therapy trials have been attempted but none have met their primary endpoints. An improved understanding of XLRS natural history and clinical outcomes may better inform future trials. Here, we report the long-term functional and structural outcomes of XLRS and the relevance of RS1 genotypes to the visual prognosis of affected individuals. Methods: A retrospective chart review of patients with molecularly confirmed X-linked retinoschisis was performed. Functional and structural outcomes, and RS1 genotype data, were included for analysis. Results: Fifty-two patients with XLRS from 33 families were included in the study. Median age at symptom onset was 5 years (range 0-49) and median follow-up was 5.7 years (range 0.1-56.8). Macular retinoschisis occurred in 103 of 104 eyes (99.0%), while peripheral retinoschisis occurred in 48 of 104 eyes (46.2%), most often in the inferotemporal quadrant (40.4%). Initial and final VA were similar (logMAR 0.498 vs. 0.521; p = 0.203). Fifty of 54 eyes (92.6%) developed detectable outer retinal loss by age 20, and 29 of 66 eyes (43.9%) had focal or diffuse outer retinal atrophy (ORA) by age 40. ORA but not central subfield thickness (CST) was associated with reduced VA. Inter-eye correlation was modest for VA (r-squared = 0.03; p = 0.08) and CST (r-squared = 0.15; p = 0.001). Carbonic anhydrase inhibitors (CAIs) improved CST (p = 0.026), but not VA (p = 0.380). Eight of 104 eyes (7.7%) had XLRS-related retinal detachment (RD), which was associated with poorer outcomes compared to eyes without RD (median final VA 0.875 vs. 0.487; p <0.0001). RS1 null genotypes had greater odds of at least moderate visual impairment at final follow-up (OR 7.81; 95% CI 2.17, 28.10; p = 0.002) which was independent of age at onset, initial CST, initial ORA, or previous RD. Discussion: Overall, long-term follow-up of XLRS patients demonstrated relatively stable VA, with presenting CST, development of ORA, and null RS1 mutations associated with poorer long-term visual outcomes, indicating a clinically relevant genotype-phenotype correlation in XLRS.
RESUMO
Stargardt disease, the most common inherited macular dystrophy, is characterized by vision loss due to central retinal atrophy. Although clinical trials for Stargardt are currently underway, the disease is typically slowly progressive, and objective, imaging-based biomarkers are critically needed. In this retrospective, observational study, we characterize the thicknesses of individual retinal sublayers by macular optical coherence tomography (OCT) in a large cohort of patients with molecularly-confirmed, ABCA4-associated Stargardt disease (STGD1) relative to normal controls. Automated segmentation of retinal sublayers was performed with manual correction as needed, and thicknesses in various macular regions were compared using mixed effects models. Relative to controls (42 eyes, 40 patients), STGD1 patients (107 eyes, 63 patients) had slight thickening of the nerve fiber layer and retinal pigment epithelium-Bruch's membrane, with thinning in other sublayers, especially the outer nuclear layer (ONL) (p < 0.0015). When comparing the rate of retinal sublayer thickness change over time (mean follow-up 3.9 years for STGD1, 2.5 years for controls), STGD1 retinas thinned faster than controls in the outer retina (ONL to photoreceptor outer segments). OCT-based retinal sublayer thickness measurements are feasible in STGD1 patients and may provide objective measures of disease progression or treatment response.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Retina/patologia , Doença de Stargardt/genética , Doença de Stargardt/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Atrofia , Criança , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Retina/diagnóstico por imagem , Estudos Retrospectivos , Doença de Stargardt/diagnóstico por imagem , Fatores de Tempo , Tomografia de Coerência Óptica , Adulto JovemAssuntos
DNA/genética , Gerenciamento Clínico , Mutação , Doenças Retinianas/etiologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética , Adolescente , Adulto , Idoso , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Doenças Retinianas/diagnóstico , Doenças Retinianas/terapia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Adulto Jovem , Doença de von Hippel-Lindau/diagnósticoRESUMO
PURPOSE: Best disease is a macular dystrophy caused by mutations in the BEST1 gene. Affected individuals exhibit a reduced electro-oculographic (EOG) response to changes in light exposure and have significantly longer outer segments (OS) than age-matched controls. The purpose of this study was to investigate the anatomical changes in the outer retina during dark and light adaptation in unaffected and Best disease subjects, and to compare these changes to the EOG. METHODS: Unaffected (n = 11) and Best disease patients (n = 7) were imaged at approximately 4-minute intervals during an approximately 40-minute dark-light cycle using spectral domain optical coherence tomography (SD-OCT). EOGs of two subjects were obtained under the same conditions. Automated three-dimensional (3-D) segmentation allowed measurement of light-related changes in the distances between five retinal surfaces. RESULTS: In normal subjects, there was a significant decrease in outer segment equivalent length (OSEL) of -2.14 µm (95% confidence interval [CI], -1.77 to -2.51 µm) 10 to 20 minutes after the start of light adaptation, while Best disease subjects exhibited a significant increase in OSEL of 2.07 µm (95% CI, 1.79-2.36 µm). The time course of the change in OS length corresponded to that of the EOG waveform. CONCLUSIONS: Our results strongly suggest that the light peak phase of the EOG is temporally related to a decreased OSEL in normal subjects, and the lack of a light peak phase in Best disease subjects is associated with an increase in OSEL. One potential role of Bestrophin-1 is to trigger an increase in the standing potential that approximates the OS to the apical surface of the RPE to facilitate phagocytosis.