Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
2.
J Zoo Wildl Med ; 51(2): 334-349, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32549563

RESUMO

There is an unmet need for specific diagnostics of immune perturbations and inflammation in beluga whale (Delphinapterus leucas) clinical care. Quantitative real-time polymerase chain reaction (qPCR) has been used to measure immunomediator gene transcription in beluga whales. The study hypothesis was that a qPCR-based immunomediator assay would supplement routine clinical data with specific and sensitive information on immune status. Two beluga whale clinical cases provided an opportunity to test this hypothesis: a whale with a skin laceration and a whale with gastrointestinal inflammation. Mitogen-stimulated immunomediator gene transcription (MSIGT) was compared between the cases and healthy contact whales. In both case studies, mitogens increased transcription of IL1B, PTGS2 (Cox-2), TNF, HIF1A, and IL2 but decreased IL10 transcription in peripheral blood mononuclear cells (PBMC) from the abnormal whale over the control. Correlations were identified between most immunomediators tested and one or more standard blood clinical values. Considering all 15 immunomediators tested, the whale with gastrointestinal inflammation had a more unique MSIGT signature than the whale with a laceration. These results support further elucidation of beluga whale PBMC cytokine profiles for use as immune biomarkers.


Assuntos
Beluga/genética , Imunomodulação/genética , Leucócitos Mononucleares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transcrição Gênica , Animais , Animais de Zoológico/genética , Animais de Zoológico/imunologia , Beluga/imunologia , Feminino , Leucócitos Mononucleares/imunologia , Masculino , Mitógenos
3.
Cell Immunol ; 304-305: 55-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27106062

RESUMO

Avian H7N9 influenza virus infection with fatal outcomes continues to pose a pandemic threat and highly immunogenic vaccines are urgently needed. In this report we show that baculovirus-derived recombinant H7 hemagglutinin protein, when delivered with RIG-I ligand, induced enhanced antibody and T cell responses and conferred protection against lethal challenge with a homologous H7N9 virus. These findings indicate the potential utility of RIG-I ligands as vaccine adjuvants to increase the immunogenicity of recombinant H7 hemagglutinin.


Assuntos
Proteína DEAD-box 58/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Linfócitos T/imunologia , Adjuvantes Imunológicos , Animais , Células Cultivadas , Feminino , Humanos , Imunidade Humoral , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Influenza Humana/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Receptores Imunológicos , Receptores de Reconhecimento de Padrão/metabolismo , Linfócitos T/virologia , Vacinas Sintéticas
4.
J Immunol ; 188(7): 3071-9, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22393155

RESUMO

We recently identified a protective MHC class Ib-restricted CD8 T cell response to infection with mouse polyomavirus. These CD8 T cells recognize a peptide from aa 139-147 of the VP2 viral capsid protein bound to the nonpolymorphic H-2Q9 molecule, a member of the Qa-2 family of ß(2)m-associated MHC class Ib molecules. Q9:VP2.139-specific CD8 T cells exhibit an unusual inflationary response characterized by a gradual expansion over 3 mo followed by a stable maintenance phase. We previously demonstrated that Q9:VP2.139-specific CD8 T cells are dependent on Ag for expansion, but not for long-term maintenance. In this study, we tested the hypothesis that the expansion and maintenance components of the Q9:VP2.139-specific T cell response are differentially dependent on CD4 T cell help and CD28 costimulation. Depletion of CD4(+) cells and CD28/CD40L blockade impaired expansion of Q9:VP2.139-specific CD8 T cells, and intrinsic CD28 signaling was sufficient for expansion. In contrast, CD4 T cell insufficiency, but not CD28/CD40L blockade, resulted in a decline in frequency of Q9:VP2.139-specific CD8 T cells during the maintenance phase. These results indicate that the Q9:VP2.139-specific CD8 T cell response to mouse polyomavirus infection depends on CD4 T cell help and CD28 costimulation for inflationary expansion, but only on CD4 T cell help for maintenance.


Assuntos
Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Infecções por Polyomavirus/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Ligante de CD40/imunologia , Divisão Celular , Seleção Clonal Mediada por Antígeno , Feminino , Interleucina-2/farmacologia , Rim/virologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Polyomavirus/isolamento & purificação , Infecções por Polyomavirus/virologia , Glândulas Salivares/virologia , Infecções Tumorais por Vírus/virologia
5.
J Immunol ; 188(9): 4340-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22447978

RESUMO

Repetitive Ag encounter, coupled with dynamic changes in Ag density and inflammation, imparts phenotypic and functional heterogeneity to memory virus-specific CD8 T cells in persistently infected hosts. For herpesvirus infections, which cycle between latency and reactivation, recent studies demonstrate that virus-specific T cell memory is predominantly derived from naive precursors recruited during acute infection. Whether functional memory T cells to viruses that persist in a nonlatent, low-level infectious state (smoldering infection) originate from acute infection-recruited naive T cells is not known. Using mouse polyomavirus (MPyV) infection, we previously showed that virus-specific CD8 T cells in persistently infected mice are stably maintained and functionally competent; however, a sizeable fraction of these memory T cells are short-lived. Further, we found that naive anti-MPyV CD8 T cells are primed de novo during persistent infection and contribute to maintenance of the virus-specific CD8 T cell population and its phenotypic heterogeneity. Using a new MPyV-specific TCR-transgenic system, we now demonstrate that virus-specific CD8 T cells recruited during persistent infection possess multicytokine effector function, have strong replication potential, express a phenotype profile indicative of authentic memory capability, and are stably maintained. In contrast, CD8 T cells recruited early in MPyV infection express phenotypic and functional attributes of clonal exhaustion, including attrition from the memory pool. These findings indicate that naive virus-specific CD8 T cells recruited during persistent infection contribute to preservation of functional memory against a smoldering viral infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Infecções por Polyomavirus/imunologia , Polyomavirus/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Camundongos , Camundongos Knockout , Infecções por Polyomavirus/genética , Infecções Tumorais por Vírus/genética
6.
NPJ Vaccines ; 9(1): 67, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553525

RESUMO

Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.

7.
Front Immunol ; 14: 1040075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891302

RESUMO

Although Human Respiratory Syncytial Virus (HRSV) is a significant cause of severe respiratory disease with high morbidity and mortality in pediatric and elderly populations worldwide there is no licensed vaccine. Bovine Respiratory Syncytial Virus (BRSV) is a closely related orthopneumovirus with similar genome structure and high homology between structural and nonstructural proteins. Like HRSV in children, BRSV is highly prevalent in dairy and beef calves and known to be involved in the etiology of bovine respiratory disease, in addition to being considered an excellent model for HRSV. Commercial vaccines are currently available for BRSV, though improvements in efficacy are needed. The aims of this study were to identify CD4+ T cell epitopes present in the fusion glycoprotein of BRSV, an immunogenic surface glycoprotein that mediates membrane fusion and a major target of neutralizing antibodies. Overlapping peptides representing three regions of the BRSV F protein were used to stimulate autologous CD4+ T cells in ELISpot assays. T cell activation was observed only in cells from cattle with the DRB3*011:01 allele by peptides from AA249-296 of the BRSV F protein. Antigen presentation studies with C-terminal truncated peptides further defined the minimum peptide recognized by the DRB3*011:01 allele. Computationally predicted peptides presented by artificial antigen presenting cells further confirmed the amino acid sequence of a DRB3*011:01 restricted class II epitope on the BRSV F protein. These studies are the first to identify the minimum peptide length of a BoLA-DRB3 class II-restricted epitope in BRSV F protein.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Bovino , Vírus Sincicial Respiratório Humano , Animais , Bovinos , Humanos , Criança , Idoso , Linfócitos T , Epitopos de Linfócito T , Linfócitos T CD4-Positivos
8.
Lancet Infect Dis ; 23(12): 1408-1417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544326

RESUMO

BACKGROUND: Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available. METHODS: In this phase 1, open-label, dose-escalation trial we evaluated the safety, tolerability, and immunogenicity of a monovalent chimpanzee adenovirus 3 vaccine against Sudan Ebola virus (cAd3-EBO S) at Makerere University Walter Reed Project in Kampala, Uganda. Study participants were recruited from the Kampala metropolitan area using International Review Board-approved written and electronic media explaining the trial intervention. Healthy adults without previous receipt of Ebola, Marburg, or cAd3 vectored-vaccines were enrolled to receive cAd3-EBO S at either 1 × 1010 or 1 × 1011 particle units (PU) in a single intramuscular vaccination and were followed up for 48 weeks. Primary safety and tolerability endpoints were assessed in all vaccine recipients by reactogenicity for the first 7 days, adverse events for the first 28 days, and serious adverse events throughout the study. Secondary immunogenicity endpoints included evaluation of binding antibody and T-cell responses against the Sudan Ebola virus glycoprotein, and neutralising antibody responses against the cAd3 vector at 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT04041570, and is completed. FINDINGS: 40 healthy adults were enrolled between July 22 and Oct 1, 2019, with 20 receiving 1 × 1010 PU and 20 receiving 1 × 1011 PU of cAd3-EBO S. 38 (95%) participants completed all follow-up visits. The cAd3-EBO S vaccine was well tolerated with no severe adverse events. The most common reactogenicity symptoms were pain or tenderness at the injection site (34 [85%] of 40), fatigue (29 [73%] of 40), and headache (26 [65%] of 40), and were mild to moderate in severity. Positive responses for glycoprotein-specific binding antibodies were induced by 2 weeks in 31 (78%) participants, increased to 34 (85%) participants by 4 weeks, and persisted to 48 weeks in 31 (82%) participants. Most participants developed glycoprotein-specific T-cell responses (20 [59%, 95% CI 41-75] of 34; six participants were removed from the T cell analysis after failing quality control parameters) by 4 weeks after vaccination, and neutralising titres against the cAd3 vector were also increased from baseline (90% inhibitory concentration of 47, 95% CI 30-73) to 4 weeks after vaccination (196, 125-308). INTERPRETATION: The cAd3-EBO S vaccine was safe at both doses, rapidly inducing immune responses in most participants after a single injection. The rapid onset and durability of the vaccine-induced antibodies make this vaccine a strong candidate for emergency deployment in Sudan Ebola virus outbreaks. FUNDING: National Institutes of Health via interagency agreement with Walter Reed Army Institute of Research.


Assuntos
Adenovirus dos Símios , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Adulto , Doença pelo Vírus Ebola/prevenção & controle , Pan troglodytes , Uganda , Sudão , Ebolavirus/genética , Anticorpos Antivirais , Adenovirus dos Símios/genética , Adenoviridae/genética , Glicoproteínas , Imunogenicidade da Vacina , Método Duplo-Cego
9.
Sci Transl Med ; 15(692): eade4790, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075129

RESUMO

Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 µg of H1ssF once (n = 5) or 60 µg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-µg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Pandemias
10.
J Immunol ; 185(3): 1692-700, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20622115

RESUMO

Virus-specific CD4(+) T cells optimize antiviral responses by providing help for antiviral humoral responses and CD8(+) T cell differentiation. Although CD4(+) T cell responses to viral infections that undergo complete clearance have been studied extensively, less is known about virus-specific CD4(+) T cell responses to viruses that persistently infect their hosts. Using a mouse polyomavirus (MPyV) infection model, we previously demonstrated that CD4(+) T cells are essential for recruiting naive MPyV-specific CD8(+) T cells in persistently infected mice. In this study, we defined two dominant MPyV-specific CD4(+) T cell populations, one directed toward an epitope derived from the nonstructural large T Ag and the other from the major viral capsid protein of MPyV. These MPyV-specific CD4(+) T cells vary in terms of their magnitude, functional profile, and phenotype during acute and persistent phases of infection. Using a minimally myeloablative-mixed bone marrow chimerism approach, we further show that naive virus-specific CD4(+) T cells, like anti-MPyV CD8(+) T cells, are primed de novo during persistent virus infection. In summary, these findings reveal quantitative and qualitative differences in the CD4(+) T cell response to a persistent virus infection and demonstrate that naive antiviral CD4(+) T cells are recruited during chronic polyomavirus infection.


Assuntos
Antígenos Transformantes de Poliomavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas do Capsídeo/imunologia , Movimento Celular/imunologia , Epitopos de Linfócito T/imunologia , Infecções por Polyomavirus/imunologia , Animais , Antígenos Virais de Tumores/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Doença Crônica , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Polyomavirus/crescimento & desenvolvimento , Polyomavirus/imunologia , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia
11.
Curr Opin HIV AIDS ; 17(4): 247-257, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762380

RESUMO

PURPOSE OF REVIEW: Anti-HIV-1 broadly neutralizing antibodies (bNAbs) are promising agents in the fight against the AIDS epidemic. Multiple bNAbs have been already evaluated in clinical trials with encouraging results. This review discusses the use of bNAbs for the prevention and treatment of HIV-1 infection, focusing on manufactured products that have been evaluated in clinical settings. RECENT FINDINGS: More than 17 bNAbs have been evaluated for safety and pharmacokinetics in humans. The vast majority presented a well tolerated profile and were generally well tolerated. Serum half-life varied from 12 to 73.5 days and can be improved by the addition of mutations to the Fc regions. Results from the antibody-mediated prevention (AMP) study show that VRC01, a CD4-binding-site bNAb, was effective at preventing the acquisition of sensitive HIV-1 strains but did not prevent the acquisition of strains whose in vitro sensitivity to the antibody had an IC80 of more than 1 µg/ml. New bNAb combinations to improve coverage are currently being evaluated. SUMMARY: In this review, we discuss the current landscape of HIV-1 bNAbs in clinical development. We also present the current strategies employed to improve the breadth, potency, serum half-life, effector function and administration of these compounds.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , HIV-1/genética , Humanos
12.
Nat Med ; 28(2): 383-391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115706

RESUMO

Currently, licensed seasonal influenza vaccines display variable vaccine effectiveness, and there remains a need for novel vaccine platforms capable of inducing broader responses against viral protein domains conserved among influenza subtypes. We conducted a first-in-human, randomized, open-label, phase 1 clinical trial ( NCT03186781 ) to evaluate a novel ferritin (H2HA-Ferritin) nanoparticle influenza vaccine platform. The H2 subtype has not circulated in humans since 1968. Adults born after 1968 have been exposed to only the H1 subtype of group 1 influenza viruses, which shares a conserved stem with H2. Including both H2-naive and H2-exposed adults in the trial allowed us to evaluate memory responses against the conserved stem domain in the presence or absence of pre-existing responses against the immunodominant HA head domain. Fifty healthy participants 18-70 years of age received H2HA-Ferritin intramuscularly as a single 20-µg dose (n = 5) or a 60-µg dose either twice in a homologous (n = 25) prime-boost regimen or once in a heterologous (n = 20) prime-boost regimen after a matched H2 DNA vaccine prime. The primary objective of this trial was to evaluate the safety and tolerability of H2HA-Ferritin either alone or in prime-boost regimens. The secondary objective was to evaluate antibody responses after vaccination. Both vaccines were safe and well tolerated, with the most common solicited symptom being mild headache after both H2HA-Ferritin (n = 15, 22%) and H2 DNA (n = 5, 25%). Exploratory analyses identified neutralizing antibody responses elicited by the H2HA-Ferritin vaccine in both H2-naive and H2-exposed populations. Furthermore, broadly neutralizing antibody responses against group 1 influenza viruses, including both seasonal H1 and avian H5 subtypes, were induced in the H2-naive population through targeting the HA stem. This ferritin nanoparticle vaccine technology represents a novel, safe and immunogenic platform with potential application for pandemic preparedness and universal influenza vaccine development.


Assuntos
Vacinas contra Influenza , Influenza Humana , Nanopartículas , Orthomyxoviridae , Adulto , Anticorpos Antivirais , Ferritinas , Humanos , Imunogenicidade da Vacina , Vacinação/efeitos adversos
13.
J Immunol ; 182(9): 5198-202, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19380764

RESUMO

The requirement for Ag in maintaining memory CD8 T cells often differs between infections that are acutely resolved and those that persist. Using the mouse polyoma virus (PyV) persistent infection model, we recently described a novel CD8 T cell response directed to a PyV peptide presented by Q9, an MHC class Ib molecule. This antiviral Q9-restricted CD8 T cell response is characterized by a 3-mo expansion phase followed by a long-term plateau phase. In this study, we demonstrate that viral Ag is required for this protracted inflation phase but is dispensable for the maintenance of this Q9-restricted CD8 T cell response. Moreover, proliferation by memory T cells, not recruitment of naive PyV-specific T cells, is primarily responsible for Q9-restricted, anti-PyV CD8 T cell inflation. These data reveal a dynamic shift in Ag dependence by an MHC class Ib-restricted memory CD8 T cell response during a persistent viral infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígenos H-2/imunologia , Infecções por Polyomavirus/imunologia , Polyomavirus/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/virologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Proliferação de Células , Feminino , Antígenos H-2/genética , Antígenos H-2/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Fatores de Tempo , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
14.
Vet Immunol Immunopathol ; 219: 109956, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31706084

RESUMO

Studies in mouse and lamb models indicate important roles of reactive oxygen species (ROS) in the pathology and immune response to respiratory syncytial virus (RSV). The role of ROS in bovine RSV (BRSV) infection of calves remains unclear. BRSV naturally infects calves, leading to similar disease course, micro- and macro-lesions, and symptomology as is observed in RSV infection of human neonates. Furthermore, humans, lambs, and calves, but not mice, have an active lung oxidative system involving lactoperoxidase (LPO) and the dual oxidases (DUOX) 1 and 2. To gain insight into the role of ROS in the BRSV-infected lung, we examined gene expression in infected bovine cells using qPCR. A panel of 19 primers was used to assay ex vivo and in vitro BRSV-infected cells. The panel targeted genes involved in both production and regulation of ROS. BRSV infection significantly increased transcription of five genes in bovine respiratory tract cells in vitro and ex vivo. PTGS2 expression more than doubled in both sample types. Four transcripts varied significantly in lung lesions, but not non-lesion samples, compared with uninfected lung. This is the first report of the transcriptional profile of ROS-related genes in the airway after BRSV infection in the natural host.


Assuntos
Doenças dos Bovinos/virologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Vírus Respiratório Sincicial/veterinária , Sistema Respiratório/virologia , Transcriptoma , Animais , Bovinos , Doenças dos Bovinos/fisiopatologia , Linhagem Celular , Ciclo-Oxigenase 2/genética , Expressão Gênica , Pulmão/citologia , Pulmão/patologia , Pulmão/virologia , Redes e Vias Metabólicas , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vírus Sincicial Respiratório Bovino , Sistema Respiratório/citologia
15.
Viral Immunol ; 29(8): 487-493, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27447349

RESUMO

Impairment of immune defenses can contribute to severe influenza infections. Rapamycin is an immunosuppressive drug often used to prevent transplant rejection and is currently undergoing clinical trials for treating cancers and autoimmune diseases. We investigated whether rapamycin has deleterious effects during lethal influenza viral infections. We treated mice with two concentrations of rapamycin and infected them with A/Puerto Rico/8/1934 (A/PR8), followed by a heterosubtypic A/Hong Kong/1/68 (A/HK68) challenge. Our data show similar morbidity, mortality, and lung viral titer with both rapamycin treatment doses compared to untreated controls, with a delay in morbidity onset in rapamycin high dose recipients during primary infection. Rapamycin treatment at high dose also led to increase in percent cytokine producing T cells in the spleen. However, all infected animals had similar serum antibody responses against A/PR8. Post-A/HK68 challenge, rapamycin had no impeding effect on morbidity or mortality and had similar serum antibody levels against A/PR8 and A/HK68. We conclude that rapamycin treatment does not adversely affect morbidity, mortality, or antibody production during lethal influenza infections.


Assuntos
Formação de Anticorpos , Imunossupressores/administração & dosagem , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Sirolimo/administração & dosagem , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Baço/imunologia , Análise de Sobrevida , Linfócitos T/imunologia , Carga Viral
16.
PLoS One ; 11(2): e0149864, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26910342

RESUMO

The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection.


Assuntos
Imunidade Adaptativa , Linfócitos T CD8-Positivos/imunologia , Imunidade Inata , Vírus da Influenza A/imunologia , NADH NADPH Oxirredutases/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Ligante de CD40/genética , Ligante de CD40/imunologia , Células Dendríticas/imunologia , Masculino , Camundongos , Camundongos Transgênicos , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Infecções por Orthomyxoviridae/genética
17.
Vaccine ; 34(6): 744-9, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26765287

RESUMO

Since the first case of human infection in March 2013, continued reports of H7N9 cases highlight a potential pandemic threat. Highly immunogenic vaccines to this virus are urgently needed to protect vulnerable populations who lack protective immunity. In this study, an egg- and adjuvant-independent adenoviral vector-based, hemagglutinin H7 subtype influenza vaccine (HAd-H7HA) demonstrated enhanced cell-mediated immunity as well as serum antibody responses in a mouse model. Most importantly, this vaccine provided complete protection against homologous A/H7N9 viral challenge suggesting its potential utility as a pandemic vaccine.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Adenoviridae , Animais , Anticorpos Antivirais/sangue , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização
18.
J Circadian Rhythms ; 3: 8, 2005 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15927074

RESUMO

BACKGROUND: We observed that a dim, red light-emitting diode (LED) triggered by activity increased the circadian periods of lab mice compared to constant darkness. It is known that the circadian period of rats increases when vigorous wheel-running triggers full-spectrum lighting; however, spectral sensitivity of photoreceptors in mice suggests little or no response to red light. Thus, we decided to test the following hypotheses: dim red light illumination triggered by activity (LEDfb) increases the circadian period of mice compared to constant dark (DD); covering the LED prevents the effect on period; and DBA2/J mice have a different response to LEDfb than C57BL6/J mice. METHODS: The irradiance spectra of the LEDs were determined by spectrophotometer. Locomotor activity of C57BL/6J and DBA/2J mice was monitored by passive-infrared sensors and circadian period was calculated from the last 10 days under each light condition. For constant dark (DD), LEDs were switched off. For LED feedback (LEDfb), the red LED came on when the mouse was active and switched off seconds after activity stopped. For taped LED the red LED was switched on but covered with black tape. Single and multifactorial ANOVAs and post-hoc t-tests were done. RESULTS: The circadian period of mice was longer under LEDfb than under DD. Blocking the light eliminated the effect. There was no difference in period change in response to LEDfb between C57BL/6 and DBA/2 mice. CONCLUSION: An increase in mouse circadian period due to dim far-red light (1 lux at 652 nm) exposure was unexpected. Since blocking the light stopped the response, sound from the sensor's electronics was not the impetus of the response. The results suggest that red light as background illumination should be avoided, and indicator diodes on passive infrared motion sensors should be switched off.

19.
Viral Immunol ; 26(1): 109-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23374150

RESUMO

Unlike the polymorphic MHC class Ia molecules, MHC class Ib molecules are oligomorphic or nonpolymorphic. We recently discovered a protective CD8 T cell response to mouse polyomavirus (MPyV) in H-2(b) haplotype mice that is restricted by H2-Q9, a member of the Qa-2 MHC class Ib family. Here, we demonstrate that immunization with a peptide corresponding to a virus capsid-derived peptide presented by Q9 also elicits MHC class Ib-restricted MPyV-specific CD8 T cells in mice of H-2(s) and H-2(g7) strains. These findings support the concept that immunization with a single MHC class Ib-restricted peptide can expand CD8 T cells in MHC class Ia allogeneic hosts.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas do Capsídeo/imunologia , Antígenos H-2/imunologia , Polyomavirus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Feminino , Genótipo , Antígenos H-2/genética , Camundongos , Vacinas de Subunidades Antigênicas/administração & dosagem
20.
Curr Opin Immunol ; 23(1): 104-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20970974

RESUMO

While the prime function of classical MHC class I molecules (MHC-I) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I antigens perform a diverse array of functions in both innate and adaptive immunity. In this review we summarize recent evidence that non classical MHC-I molecules are not only recognized by pathogen-specific T cells but that they also serve as immunoregulatory molecules by stimulating a number of distinct non-conventional T cell subsets.


Assuntos
Autoimunidade , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA