Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(5): 1282-1291.e10, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360181

RESUMO

BACKGROUND: House dust mite (HDM) is the most common allergen trigger globally for allergic rhinitis and atopic asthma. OBJECTIVES: To expedite accurate confirmation of allergen sensitization, we designed fluorescent allergen tetramers to directly stain specific IgE on basophils to detect specific allergen sensitization using the flow cytometric CytoBas assay. METHODS: Recombinant proteins of major HDM allergens (component), Der f 1, Der p 1, and Der p 2 were biotinylated and conjugated with fluorochrome streptavidins as tetramers. Blood samples from 64 patients who are HDM-allergic and 26 controls that are non-HDM-sensitized were incubated with allergen tetramers for evaluation of basophil binding (CytoBas) and activation (BAT) with flow cytometry. RESULTS: The tetramers effectively bound and activated basophils from patients who are allergic but not from controls who are nonsensitized. CytoBas with Der p 1 as a single allergen had comparable sensitivity and specificity (92% and 100%) to BAT (91% and 100%) in detecting allergen sensitization, as did CytoBas with Der p 2 (95% and 96%) to BAT (95% and 87%). A positive staining for Der p 1 and/or Der p 2 in CytoBas was 100% sensitive and 96% specific for HDM allergy. CONCLUSIONS: CytoBas has diagnostic accuracy for group 1 and group 2 HDM allergens that is comparable to BAT, but with additional advantages of multiple allergen components in a single tube and no requirement for in vitro basophil activation. These findings endorse a single, multiplex CytoBas assay for accurate and component-resolved diagnosis of aeroallergen sensitization in patients with allergic asthma and/or rhinitis.


Assuntos
Antígenos de Dermatophagoides , Proteínas de Artrópodes , Asma , Basófilos , Cisteína Endopeptidases , Citometria de Fluxo , Pyroglyphidae , Rinite Alérgica , Humanos , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Basófilos/imunologia , Cisteína Endopeptidases/imunologia , Animais , Rinite Alérgica/imunologia , Rinite Alérgica/diagnóstico , Asma/imunologia , Asma/diagnóstico , Feminino , Adulto , Citometria de Fluxo/métodos , Masculino , Pyroglyphidae/imunologia , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Alérgenos/imunologia , Sensibilidade e Especificidade , Criança
2.
NPJ Vaccines ; 9(1): 129, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39013889

RESUMO

Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Healthy adults who received primary BNT162b2 (mRNA) or ChAdOx1 (vector) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.

3.
Lancet Microbe ; : 100898, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39127054

RESUMO

BACKGROUND: The RTS,S malaria vaccine is currently recommended for children aged 5-6 months in regions with moderate-to-high Plasmodium falciparum transmission. However, vaccination only confers 55% efficacy over 12 months and wanes within 18 months. The immunological mechanisms of RTS,S-mediated immunity are poorly understood; therefore, we aimed to identify antibody response types associated with protection against malaria in children vaccinated with RTS,S. METHODS: In this post-hoc analysis, we evaluated antibody responses in 737 children aged 1-4 years vaccinated with RTS,S in a phase 2b clinical trial conducted in Mozambique in 2003. We evaluated all available samples collected from children 30 days after the three-dose vaccination schedule at study month 3 (M3; n=737 available of 803 children allocated to receive RTS,S). For comparison, we tested a subset of samples collected before vaccination at study month 0 (M0; n=50) and from children in the control vaccine group (M0 n=25; M3 n=99). We quantified the induction of antibodies to different regions of the vaccine antigen that function by fixing serum complement proteins and binding to Fcγ receptors (FcγRs; FcγRI, FcγRIIa, and FcγRIII) expressed on immune cells as potential mechanisms of immunity. FINDINGS: Functional antibody responses to the C-terminal region of the vaccine antigen, circumsporozoite protein (CSP), were associated with a reduced risk of malaria (C1q p=0·0060, FcγRIIa p=0·014, and FcγRIII p=0·019). These associations remained significant in male participants when the analyses were stratified by sex (C1q p=0·012, FcγRI p=0·023, FcγRIIa p=0·0070, and FcγRIII p=0·0080). IgA to the central repeat (p=0·0010) and C-terminal (p=0·0040) regions of CSP were also associated with protection. We show that IgA can bind FcαRI and mediate opsonic phagocytosis using a serum pool and monoclonal antibodies. Multiparameter analysis using machine-learning methods suggest that IgA, complement fixation, and FcγRI binding were most predictive of protection against malaria (hazard ratio <1) and suggested that associations differed between male and female participants. INTERPRETATION: We provide evidence that functional antibody responses mediated by IgG and IgA are associated with protection against malaria in young children vaccinated with RTS,S, and suggest potential differences in the correlates of immunity between males and females. These findings reveal new avenues that could be used to achieve malaria vaccines with higher efficacy. FUNDING: National Health and Medical Research Council, Australia, and Thrasher Research Fund.

4.
J Infect ; 89(4): 106246, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127451

RESUMO

Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. Here, we characterized the RBD-specific memory B cell (Bmem) response following a fourth dose with a BA.1 or BA.5 bivalent vaccine, in direct comparison with a WH1 monovalent fourth dose. Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines were sampled before and one month after a fourth dose with a monovalent or a BA.1 or BA.5 bivalent vaccine. Serum neutralizing antibodies (NAb) were quantified, as well as RBD-specific Bmem with an in-depth spectral flow cytometry panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5 variants. Both bivalent vaccines elicited higher NAb titers against Omicron subvariants compared to the monovalent vaccine. Following either vaccine type, recipients had slightly increased WH1 RBD-specific Bmem numbers. Both bivalent vaccines significantly increased WH1 RBD-specific Bmem binding of all Omicron subvariants tested by flow cytometry, while recognition of Omicron subvariants was not enhanced following monovalent vaccination. IgG1+ Bmem dominated the response, with substantial IgG4+ Bmem only detected in recipients of an mRNA vaccine for their primary dose. Thus, Omicron-based bivalent vaccines can significantly boost NAb and Bmem specific for ancestral WH1 and Omicron variants and improve recognition of descendent subvariants by pre-existing, WH1-specific Bmem beyond that of a monovalent vaccine. This provides new insights into the capacity of variant-based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2 variants and potentially protect against severe disease. ONE-SENTENCE SUMMARY: Omicron BA.1 and BA.5 bivalent COVID-19 boosters, used as a fourth dose, increase RBD-specific Bmem cross-recognition of Omicron subvariants, both those encoded by the vaccines and antigenically distinct subvariants, further than a monovalent booster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA