Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pediatr Orthop ; 44(1): e61-e68, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37867374

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, neurodegenerative disorder that manifests with progressive loss of ambulation and refractory dystonia, especially in the early-onset classic form. This leads to osteopenia and stress on long bones, which pose an increased risk of atraumatic femur fractures. The purpose of this study is to describe the unique challenges in managing femur fractures in PKAN and the effect of disease manifestations on surgical outcomes. METHODS: A retrospective case review was conducted on 5 patients (ages 10 to 20 y) with PKAN with a femur fracture requiring surgical intervention. Data regarding initial presentation, surgical treatment, complications, and outcomes were obtained. RESULTS: All patients were non-ambulatory, with 4 of 5 patients sustaining an atraumatic femur fracture in the setting of dystonia episode. One patient had an additional contralateral acetabular fracture. Postoperatively, 4 of the 5 patients sustained orthopaedic complications requiring surgical revision, with 3 of these secondary to dystonia. Overall, 4 required prolonged hospitalization in the setting of refractory dystonia. CONCLUSION: Femur fractures in PKAN present distinct challenges for successful outcomes. A rigid intramedullary rod with proximal and distal interlocking screws is most protective against surgical complications associated with refractory dystonia occurring during the postoperative period. Multidisciplinary planning for postoperative care is essential and may include aggressive sedation and pain management to decrease the risk of subsequent injuries or complications. LEVEL OF EVIDENCE: Level IV.


Assuntos
Distonia , Neurodegeneração Associada a Pantotenato-Quinase , Fraturas da Coluna Vertebral , Humanos , Neurodegeneração Associada a Pantotenato-Quinase/complicações , Neurodegeneração Associada a Pantotenato-Quinase/terapia , Distonia/complicações , Distonia/terapia , Estudos Retrospectivos , Fêmur
2.
Dev Med Child Neurol ; 63(12): 1402-1409, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34347296

RESUMO

This review provides recommendations for the evaluation and management of individuals with beta-propeller protein-associated neurodegeneration (BPAN). BPAN is one of several neurodegenerative disorders with brain iron accumulation along with pantothenate kinase-associated neurodegeneration, PLA2G6-associated neurodegeneration, mitochondrial membrane protein-associated neurodegeneration, fatty acid hydroxylase-associated neurodegeneration, and COASY protein-associated neurodegeneration. BPAN typically presents with global developmental delay and epilepsy in childhood, which is followed by the onset of dystonia and parkinsonism in mid-adolescence or adulthood. BPAN is an X-linked dominant disorder caused by pathogenic variants in WDR45, resulting in a broad clinical phenotype and imaging spectrum. This review, informed by an evaluation of the literature and expert opinion, discusses the clinical phenotype and progression of the disease, imaging findings, epilepsy features, and genetics, and proposes an approach to the initial evaluation and management of disease manifestations across the life span in individuals with BPAN. What this paper adds The complex epilepsy profile of beta-propeller protein-associated neurodegeneration (BPAN) often resolves in adolescence. The treatment for an individual with BPAN is supportive, with attention to sleep disorders, complex epilepsy, and behavioral problems. Individuals with BPAN have shifting needs throughout their life span requiring multidisciplinary care.


Assuntos
Encéfalo/patologia , Ferro/metabolismo , Doenças Neurodegenerativas/diagnóstico , Encéfalo/metabolismo , Gerenciamento Clínico , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
3.
Am J Hum Genet ; 99(6): 1229-1244, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27817865

RESUMO

Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285∗), c.247_250del (p.Asn83Hisfs∗4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy.


Assuntos
Distúrbios Distônicos/genética , Ácidos Graxos/biossíntese , Mitocôndrias/metabolismo , Mutação , Atrofia Óptica/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Gânglios da Base/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos , Teste de Complementação Genética , Humanos , Lactente , Masculino , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Linhagem , Sítios de Splice de RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Mov Disord ; 33(2): 282-288, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205509

RESUMO

OBJECTIVE: Examine relationships among neurodegenerative biomarkers and PD motor and nonmotor symptoms. BACKGROUND: CSF alpha-synuclein is decreased in PD versus healthy controls, but whether plasma and saliva alpha-synuclein differentiate these groups is controversial. Correlations of alpha-synuclein among biofluids (CSF, plasma, saliva) or biomarkers (eg, beta-amyloid, tau [total, phosphorylated]) are not fully understood. The relationships of these biomarkers with PD clinical features remain unclear. METHODS: BioFIND, a cross-sectional, observational study, examines clinical and biomarker characteristics in moderate-advanced PD and matched healthy controls. We compared alpha-synuclein concentrations across diagnosis, biofluids, and CSF biomarkers. Correlations of CSF biomarkers and MDS-UPDRS, motor phenotype, MoCA, and rapid eye movement sleep behavior disorder questionnaire scores in PD were examined. RESULTS: CSF alpha-synuclein was lower in PD versus controls (P = .01), controlling for age, gender, and education. Plasma and saliva alpha-synuclein did not differ between PD and controls, and alpha-synuclein did not significantly correlate among biofluids. CSF beta-amyloid1-42 was lower in PD versus controls (P < .01), and correlated weakly with MoCA recall scores (r = 0.23, P = .02). CSF alpha-synuclein was lower in the postural instability/gait difficulty phenotype than other motor phenotypes (P < .01). No CSF biomarkers predicted or correlated with total motor or rapid eye movement sleep behavior disorder scores. CSF alpha-synuclein correlated with beta-amyloid1-42 , total-tau, and phosphorylated-tau (r = 0.41, 0.81, 0.43, respectively; Ps < .001). CONCLUSION: Lower CSF alpha-synuclein is associated with diagnosis and motor phenotype in moderate-advanced PD. Plasma and saliva alpha-synuclein neither correlate with CSF alpha-synuclein, nor distinguish PD from controls. CSF beta-amyloid1-42 remains a potential biomarker for cognitive impairment in PD. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/metabolismo , Saliva/química , Idoso , Peptídeos beta-Amiloides/metabolismo , Estudos de Coortes , Correlação de Dados , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Fragmentos de Peptídeos/metabolismo , Equilíbrio Postural , Transtornos de Sensação/etiologia , Estados Unidos , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
5.
Mol Genet Metab ; 121(2): 180-189, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28456385

RESUMO

Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a form of Neurodegeneration with Brain Iron Accumulation (NBIA) associated with mutations in the pantothenate kinase 2 gene (PANK2). The PANK2 catalyzes the first step of coenzyme A (CoA) biosynthesis, a pathway producing an essential cofactor that plays a key role in energy and lipid metabolism. The majority of PANK2 mutations reduces or abolishes the activity of the enzyme. In around 10% of cases with PKAN, the presence of deformed red blood cells with thorny protrusions in the circulation has been detected. Changes in membrane protein expression and assembly during erythropoiesis were previously explored in patients with PKAN. However, data on red blood cell membrane phospholipid organization are still missing in this disease. In this study, we performed lipidomic analysis on red blood cells from Italian patients affected by PKAN with a particular interest in membrane physico-chemical properties. We showed an increased number of small red blood cells together with membrane phospholipid alteration, particularly a significant increase in sphingomyelin (SM)/phosphatidylcholine (PC) and SM/phosphatidylethanolamine (PE) ratios, in subjects with PKAN. The membrane structural abnormalities were associated with membrane fluidity perturbation. These morphological and functional characteristics of red blood cells in patients with PKAN offer new possible tools in order to shed light on the pathogenesis of the disease and to possibly identify further biomarkers for clinical studies.


Assuntos
Membrana Eritrocítica/química , Lipídeos de Membrana/sangue , Neurodegeneração Associada a Pantotenato-Quinase/sangue , Neurodegeneração Associada a Pantotenato-Quinase/fisiopatologia , Fosfolipídeos/sangue , Adulto , Biomarcadores/sangue , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Membrana Eritrocítica/fisiologia , Feminino , Humanos , Ferro/metabolismo , Imageamento por Ressonância Magnética , Masculino , Fluidez de Membrana , Lipídeos de Membrana/química , Proteínas de Membrana/genética , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Mutação , Neurodegeneração Associada a Pantotenato-Quinase/genética , Fosfolipídeos/química , Adulto Jovem
6.
Mov Disord ; 31(6): 924-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27113479

RESUMO

BACKGROUND: Identifying PD-specific biomarkers in biofluids will greatly aid in diagnosis, monitoring progression, and therapeutic interventions. PD biomarkers have been limited by poor discriminatory power, partly driven by heterogeneity of the disease, variability of collection protocols, and focus on de novo, unmedicated patients. Thus, a platform for biomarker discovery and validation in well-characterized, clinically typical, moderate to advanced PD cohorts is critically needed. METHODS: BioFIND (Fox Investigation for New Discovery of Biomarkers in Parkinson's Disease) is a cross-sectional, multicenter biomarker study that established a repository of clinical data, blood, DNA, RNA, CSF, saliva, and urine samples from 118 moderate to advanced PD and 88 healthy control subjects. Inclusion criteria were designed to maximize diagnostic specificity by selecting participants with clinically typical PD symptoms, and clinical data and biospecimen collection utilized standardized procedures to minimize variability across sites. RESULTS: We present the study methodology and data on the cohort's clinical characteristics. Motor scores and biospecimen samples including plasma are available for practically defined off and on states and thus enable testing the effects of PD medications on biomarkers. Other biospecimens are available from off state PD assessments and from controls. CONCLUSION: Our cohort provides a valuable resource for biomarker discovery and validation in PD. Clinical data and biospecimens, available through The Michael J. Fox Foundation for Parkinson's Research and the National Institute of Neurological Disorders and Stroke, can serve as a platform for discovering biomarkers in clinically typical PD and comparisons across PD's broad and heterogeneous spectrum. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Biomarcadores , Doença de Parkinson/diagnóstico , Idoso , Bancos de Espécimes Biológicos , Estudos de Coortes , Estudos Transversais , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Am J Hum Genet ; 91(6): 1144-9, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23176820

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic disorders characterized by abnormal iron deposition in the basal ganglia. We report that de novo mutations in WDR45, a gene located at Xp11.23 and encoding a beta-propeller scaffold protein with a putative role in autophagy, cause a distinctive NBIA phenotype. The clinical features include early-onset global developmental delay and further neurological deterioration (parkinsonism, dystonia, and dementia developing by early adulthood). Brain MRI revealed evidence of iron deposition in the substantia nigra and globus pallidus. Males and females are phenotypically similar, an observation that might be explained by somatic mosaicism in surviving males and germline or somatic mutations in females, as well as skewing of X chromosome inactivation. This clinically recognizable disorder is among the more common forms of NBIA, and we suggest that it be named accordingly as beta-propeller protein-associated neurodegeneration.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/genética , Exoma , Genes Ligados ao Cromossomo X , Sobrecarga de Ferro/genética , Mutação , Fenótipo , Alelos , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/patologia , Feminino , Ordem dos Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sobrecarga de Ferro/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular
8.
Mol Genet Metab ; 116(4): 289-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26547561

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive movement disorder that is due to mutations in PANK2. Pathologically, it is a member of a class of diseases known as neurodegeneration with brain iron accumulation (NBIA) and features increased tissue iron and ubiquitinated proteinaceous aggregates in the globus pallidus. We have previously determined that these aggregates represent condensed residue derived from degenerated pallidal neurons. However, the protein content, other than ubiquitin, of these aggregates remains unknown. In the present study, we performed biochemical and immunohistochemical studies to characterize these aggregates and found them to be enriched in apolipoprotein E that is poorly soluble in detergent solutions. However, we did not determine a significant association between APOE genotype and the clinical phenotype of disease in our database of 81 cases. Rather, we frequently identified similar ubiquitin- and apolipoprotein E-enriched lesions in these neurons in non-PKAN patients in the penumbrae of remote infarcts that involve the globus pallidus, and occasionally in other brain sites that contain large γ-aminobutyric acid (GABA)ergic neurons. Our findings, taken together, suggest that tissue or cellular hypoxic/ischemic injury within the globus pallidus may underlie the pathogenesis of PKAN.


Assuntos
Apolipoproteínas E/química , Isquemia Encefálica/genética , Neurônios GABAérgicos/química , Neurodegeneração Associada a Pantotenato-Quinase/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Agregação Patológica de Proteínas/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Estudos de Casos e Controles , Criança , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Expressão Gênica , Globo Pálido/metabolismo , Globo Pálido/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neurodegeneração Associada a Pantotenato-Quinase/complicações , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Agregação Patológica de Proteínas/complicações , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
9.
Mov Disord ; 29(7): 949-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24532106

RESUMO

BACKGROUND: The effect of the surgical site of DBS on balance and gait in Parkinson's Disease (PD) is uncertain. This is the first double-blind study of subjects randomized to either the STN (N = 14) or GPi (N = 14) who were assessed on a range of clinical balance measures. METHODS: Balance testing occurred before and 6 months postsurgery. A control PD group was tested over the same period without surgery (N = 9). All subjects were tested on and off medication and DBS subjects were also tested on and off DBS. The Postural Instability and Gait Disability items of the UPDRS and additional functional tests, which we call the Balance and Gait scale, were assessed. Activities of Balance Confidence and Activities of Daily Living questionnaires were also recorded. RESULTS: Balance was not different between the best-treated states before and after DBS surgery for both sites. Switching DBS on improved balance scores, and scores further improved with medication, compared to the off state. The GPi group showed improved performance in the postsurgery off state and better ratings of balance confidence after surgery, compared to the STN group. CONCLUSIONS: Clinical measures of balance function for both the STN and GPi sites showed that balance did not improve beyond the best medically treated state before surgery. Both clinical balance testing in the off/off state and self-reported balance confidence after surgery showed better performance in the GPi than the STN group.


Assuntos
Estimulação Encefálica Profunda , Marcha/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Equilíbrio Postural/fisiologia , Atividades Cotidianas , Adulto , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
10.
Brain ; 136(Pt 6): 1708-17, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23687123

RESUMO

Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a 'halo' of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Ferro/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Adolescente , Adulto , Estudos de Coortes , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Doenças Neurodegenerativas/diagnóstico , Adulto Jovem
11.
N Engl J Med ; 362(22): 2077-91, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20519680

RESUMO

BACKGROUND: Deep-brain stimulation is the surgical procedure of choice for patients with advanced Parkinson's disease. The globus pallidus interna and the subthalamic nucleus are accepted targets for this procedure. We compared 24-month outcomes for patients who had undergone bilateral stimulation of the globus pallidus interna (pallidal stimulation) or subthalamic nucleus (subthalamic stimulation). METHODS: At seven Veterans Affairs and six university hospitals, we randomly assigned 299 patients with idiopathic Parkinson's disease to undergo either pallidal stimulation (152 patients) or subthalamic stimulation (147 patients). The primary outcome was the change in motor function, as blindly assessed on the Unified Parkinson's Disease Rating Scale, part III (UPDRS-III), while patients were receiving stimulation but not receiving antiparkinsonian medication. Secondary outcomes included self-reported function, quality of life, neurocognitive function, and adverse events. RESULTS: Mean changes in the primary outcome did not differ significantly between the two study groups (P=0.50). There was also no significant difference in self-reported function. Patients undergoing subthalamic stimulation required a lower dose of dopaminergic agents than did those undergoing pallidal stimulation (P=0.02). One component of processing speed (visuomotor) declined more after subthalamic stimulation than after pallidal stimulation (P=0.03). The level of depression worsened after subthalamic stimulation and improved after pallidal stimulation (P=0.02). Serious adverse events occurred in 51% of patients undergoing pallidal stimulation and in 56% of those undergoing subthalamic stimulation, with no significant between-group differences at 24 months. CONCLUSIONS: Patients with Parkinson's disease had similar improvement in motor function after either pallidal or subthalamic stimulation. Nonmotor factors may reasonably be included in the selection of surgical target for deep-brain stimulation. (ClinicalTrials.gov numbers, NCT00056563 and NCT01076452.)


Assuntos
Terapia por Estimulação Elétrica/métodos , Globo Pálido , Destreza Motora , Doença de Parkinson/terapia , Núcleo Subtalâmico , Atividades Cotidianas , Idoso , Cognição , Terapia por Estimulação Elétrica/efeitos adversos , Terapia por Estimulação Elétrica/mortalidade , Feminino , Seguimentos , Humanos , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/mortalidade , Doença de Parkinson/fisiopatologia , Qualidade de Vida , Resultado do Tratamento
12.
Mol Genet Metab ; 110(3): 336-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891537

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder of coenzyme A homeostasis caused by defects in the mitochondrial pantothenate kinase 2. Patients with PKAN present with a progressive neurological decline and brain iron accumulation, but general energy balance and nutrition status among these patients has not been reported. To determine if defects in PANK2 change basic energy metabolism in humans, we measured body composition, resting energy expenditure, dietary intake, and blood metabolites among 16 subjects with PKAN. Subjects had a broad range of disease severity but, despite the essential role of coenzyme A in energy metabolism, the subjects had remarkably normal body composition, dietary intake and energy metabolism compared to population normal values. We did observe increased resting energy expenditure associated with disease severity, suggesting increased energy needs later in the disease process, and elevated urinary mevalonate levels.


Assuntos
Metabolismo Energético , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Composição Corporal , Estudos de Casos e Controles , Criança , Feminino , Humanos , Lipídeos/sangue , Masculino , Ácido Mevalônico/urina , Pessoa de Meia-Idade , Neurodegeneração Associada a Pantotenato-Quinase/sangue , Adulto Jovem
13.
Pediatr Neurol ; 138: 1-4, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270151

RESUMO

BACKGROUND: Down syndrome regression disorder (DSRD) is characterized by the sudden loss of adaptive function, cognitive-executive function, and language with abnormal sleep and/or motor control. METHODS: Clinical, laboratory, and imaging data from three individuals with DSRD and iron on brain imaging were reviewed. RESULTS: Three patients with Down syndrome presented with new onset of flat affect, depression, reduced speech, and other neurological symptoms consistent with DSRD. Magnetic resonance imaging showed abnormal iron accumulation in the basal ganglia, as well as calcification in two cases. Molecular diagnostic testing for neurodegeneration with brain iron accumulation was negative in the two individuals tested. CONCLUSIONS: These individuals presented suggest that a subset of individuals with DSRD have abnormal brain iron accumulation. Motor control symptoms reported in DSRD, such as stereotypies and parkinsonism, may reflect this basal ganglia involvement. The presence of abnormal brain iron should not delay or preclude diagnosis and treatment for DSRD.


Assuntos
Síndrome de Down , Humanos , Síndrome de Down/complicações , Síndrome de Down/patologia , Ferro , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/patologia , Imageamento por Ressonância Magnética
14.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745522

RESUMO

Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders.

15.
Sci Transl Med ; 15(711): eabo1557, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647388

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and neuroprotective or disease-modifying interventions remain elusive. High-throughput markers aimed at stratifying patients on the basis of shared etiology are required to ensure the success of disease-modifying therapies in clinical trials. Mitochondrial dysfunction plays a prominent role in the pathogenesis of PD. Previously, we found brain region-specific accumulation of mitochondrial DNA (mtDNA) damage in PD neuronal culture and animal models, as well as in human PD postmortem brain tissue. To investigate mtDNA damage as a potential blood-based marker for PD, we describe herein a PCR-based assay (Mito DNADX) that allows for the accurate real-time quantification of mtDNA damage in a scalable platform. We found that mtDNA damage was increased in peripheral blood mononuclear cells derived from patients with idiopathic PD and those harboring the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation in comparison with age-matched controls. In addition, mtDNA damage was elevated in non-disease-manifesting LRRK2 mutation carriers, demonstrating that mtDNA damage can occur irrespective of a PD diagnosis. We further established that Lrrk2 G2019S knock-in mice displayed increased mtDNA damage, whereas Lrrk2 knockout mice showed fewer mtDNA lesions in the ventral midbrain, compared with wild-type control mice. Furthermore, a small-molecule kinase inhibitor of LRRK2 mitigated mtDNA damage in a rotenone PD rat midbrain neuron model and in idiopathic PD patient-derived lymphoblastoid cell lines. Quantifying mtDNA damage using the Mito DNADX assay may have utility as a candidate marker of PD and for measuring the pharmacodynamic response to LRRK2 kinase inhibitors.


Assuntos
DNA Mitocondrial , Doença de Parkinson , Humanos , Animais , Camundongos , Ratos , DNA Mitocondrial/genética , Doença de Parkinson/genética , Leucócitos Mononucleares , Mitocôndrias , Dano ao DNA
17.
Artigo em Inglês | MEDLINE | ID: mdl-34909266

RESUMO

Background: Neurodegeneration with brain iron accumulation (NBIA) disorders comprise a group of rare but devastating inherited neurological diseases with unifying features of progressive cognitive and motor decline, and increased iron deposition in the basal ganglia. Although at present there are no proven disease-modifying treatments, the severe nature of these monogenic disorders lends to consideration of personalized medicine strategies, including targeted gene therapy. In this review we summarize the progress and future direction towards precision therapies for NBIA disorders. Methods: This review considered all relevant publications up to April 2021 using a systematic search strategy of PubMed and clinical trials databases. Results: We review what is currently known about the underlying pathophysiology of NBIA disorders, common NBIA disease pathways, and how this knowledge has influenced current management strategies and clinical trial design. The safety profile, efficacy and clinical outcome of clinical studies are reviewed. Furthermore, the potential for future therapeutic approaches is also discussed. Discussion: Therapeutic options in NBIAs remain very limited, with no proven disease-modifying treatments at present. However, a number of different approaches are currently under development with increasing focus on targeted precision therapies. Recent advances in the field give hope that novel strategies, such as gene therapy, gene editing and substrate replacement therapies are both scientifically and financially feasible for these conditions. Highlights: This article provides an up-to-date review of the current literature about Neurodegeneration with Brain Iron Accumulation (NBIA), with a focus on disease pathophysiology, current and previously trialed therapies, and future treatments in development, including consideration of potential genetic therapy approaches.


Assuntos
Ferro , Doenças Neurodegenerativas , Encéfalo , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia
18.
Front Neurol ; 11: 1024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013674

RESUMO

Most neurodegeneration with brain iron accumulation (NBIA) disorders can be distinguished by identifying characteristic changes on magnetic resonance imaging (MRI) in combination with clinical findings. However, a significant number of patients with an NBIA disorder confirmed by genetic testing have MRI features that are atypical for their specific disease. The appearance of specific MRI patterns depends on the stage of the disease and the patient's age at evaluation. MRI interpretation can be challenging because of heterogeneously acquired MRI datasets, individual interpreter bias, and lack of quantitative data. Therefore, optimal acquisition and interpretation of MRI data are needed to better define MRI phenotypes in NBIA disorders. The stepwise approach outlined here may help to identify NBIA disorders and delineate the natural course of MRI-identified changes.

19.
Brain Commun ; 2(2): fcaa178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33629063

RESUMO

Bilateral basal ganglia abnormalities on MRI are observed in a wide variety of childhood disorders. MRI pattern recognition can enable rationalization of investigations and also complement clinical and molecular findings, particularly confirming genomic findings and also enabling new gene discovery. A pattern recognition approach in children with bilateral basal ganglia abnormalities on brain MRI was undertaken in this international multicentre cohort study. Three hundred and five MRI scans belonging to 201 children with 34 different disorders were rated using a standard radiological scoring proforma. In addition, literature review on MRI patterns was undertaken in these 34 disorders and 59 additional disorders reported with bilateral basal ganglia MRI abnormalities. Cluster analysis on first MRI findings from the study cohort grouped them into four clusters: Cluster 1-T2-weighted hyperintensities in the putamen; Cluster 2-T2-weighted hyperintensities or increased MRI susceptibility in the globus pallidus; Cluster 3-T2-weighted hyperintensities in the globus pallidus, brainstem and cerebellum with diffusion restriction; Cluster 4-T1-weighted hyperintensities in the basal ganglia. The 34 diagnostic categories included in this study showed dominant clustering in one of the above four clusters. Inflammatory disorders grouped together in Cluster 1. Mitochondrial and other neurometabolic disorders were distributed across clusters 1, 2 and 3, according to lesions dominantly affecting the striatum (Cluster 1: glutaric aciduria type 1, propionic acidaemia, 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome and thiamine responsive basal ganglia disease associated with SLC19A3), pallidum (Cluster 2: methylmalonic acidaemia, Kearns Sayre syndrome, pyruvate dehydrogenase complex deficiency and succinic semialdehyde dehydrogenase deficiency) or pallidum, brainstem and cerebellum (Cluster 3: vigabatrin toxicity, Krabbe disease). The Cluster 4 pattern was exemplified by distinct T1-weighted hyperintensities in the basal ganglia and other brain regions in genetically determined hypermanganesemia due to SLC39A14 and SLC30A10. Within the clusters, distinctive basal ganglia MRI patterns were noted in acquired disorders such as cerebral palsy due to hypoxic ischaemic encephalopathy in full-term babies, kernicterus and vigabatrin toxicity and in rare genetic disorders such as 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome, thiamine responsive basal ganglia disease, pantothenate kinase-associated neurodegeneration, TUBB4A and hypermanganesemia. Integrated findings from the study cohort and literature review were used to propose a diagnostic algorithm to approach bilateral basal ganglia abnormalities on MRI. After integrating clinical summaries and MRI findings from the literature review, we developed a prototypic decision-making electronic tool to be tested using further cohorts and clinical practice.

20.
JAMA ; 301(1): 63-73, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19126811

RESUMO

CONTEXT: Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. OBJECTIVE: To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. DESIGN, SETTING, AND PATIENTS: Randomized controlled trial of patients who received either deep brain stimulation or best medical therapy, stratified by study site and patient age (< 70 years vs > or = 70 years) at 7 Veterans Affairs and 6 university hospitals between May 2002 and October 2005. A total of 255 patients with PD (Hoehn and Yahr stage > or = 2 while not taking medications) were enrolled; 25% were aged 70 years or older. The final 6-month follow-up visit occurred in May 2006. INTERVENTION: Bilateral deep brain stimulation of the subthalamic nucleus (n = 60) or globus pallidus (n = 61). Patients receiving best medical therapy (n = 134) were actively managed by movement disorder neurologists. MAIN OUTCOME MEASURES: The primary outcome was time spent in the "on" state (good motor control with unimpeded motor function) without troubling dyskinesia, using motor diaries. Other outcomes included motor function, quality of life, neurocognitive function, and adverse events. RESULTS: Patients who received deep brain stimulation gained a mean of 4.6 h/d of on time without troubling dyskinesia compared with 0 h/d for patients who received best medical therapy (between group mean difference, 4.5 h/d [95% CI, 3.7-5.4 h/d]; P < .001). Motor function improved significantly (P < .001) with deep brain stimulation vs best medical therapy, such that 71% of deep brain stimulation patients and 32% of best medical therapy patients experienced clinically meaningful motor function improvements (> or = 5 points). Compared with the best medical therapy group, the deep brain stimulation group experienced significant improvements in the summary measure of quality of life and on 7 of 8 PD quality-of-life scores (P < .001). Neurocognitive testing revealed small decrements in some areas of information processing for patients receiving deep brain stimulation vs best medical therapy. At least 1 serious adverse event occurred in 49 deep brain stimulation patients and 15 best medical therapy patients (P < .001), including 39 adverse events related to the surgical procedure and 1 death secondary to cerebral hemorrhage. CONCLUSION: In this randomized controlled trial of patients with advanced PD, deep brain stimulation was more effective than best medical therapy in improving on time without troubling dyskinesias, motor function, and quality of life at 6 months, but was associated with an increased risk of serious adverse events. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00056563.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson/terapia , Idoso , Cognição , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Globo Pálido , Humanos , Masculino , Pessoa de Meia-Idade , Destreza Motora , Qualidade de Vida , Núcleo Subtalâmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA