Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Genet ; 12(4): e1006002, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27119146

RESUMO

Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis.


Assuntos
Autoantígenos/metabolismo , Colágeno/biossíntese , Retículo Endoplasmático/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Autoantígenos/genética , Osso e Ossos/fisiologia , Linhagem Celular , Colágeno/metabolismo , Ciclofilinas/metabolismo , Matriz Extracelular/metabolismo , Hidroxilação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética
2.
Alcohol Clin Exp Res ; 38(3): 672-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24256560

RESUMO

BACKGROUND: In bone, NADPH oxidase (NOX)-derived reactive oxygen species (ROS) superoxide and/or hydrogen peroxide are an important stimulus for osteoclast differentiation and activity. Previously, we have demonstrated that chronic ethanol (EtOH) consumption generates excess NOX-dependent ROS in osteoblasts, which functions to stimulate nuclear factor kappa-ß receptor ligand (RANKL)-RANK signaling, thus increasing osteoclastogenesis and activity. This activity can be blocked by co-administration of EtOH with the pan-NOX inhibitor diphenylene idonium (DPI). METHODS: To test whether EtOH-induced bone loss is dependent on a functional NOX2 enzyme, 6-week-old female C57BL/6J-Ncf1/p47phox(-/-) (p47phox KO) and wild-type (WT) mice were pair-fed EtOH diets for 40 days. Bone loss was assessed by 3-point bending, micro-computed tomography and static histomorphometric analysis. Additionally, ST2 cultured cells were co-treated with EtOH and NOX inhibitors, DPI, gliotoxin, and plumbagin, after which changes in ROS production, and in RANKL and NOX mRNA expression were analyzed. RESULTS: In WT mice, EtOH treatment significantly reduced bone density and mechanical strength, and increased total osteoclast number and activity. In EtOH-treated p47phox KO mice, bone density and mechanical strength were completely preserved. EtOH p47phox KO mice had no changes in osteoclast numbers or activity, and no elevations in serum CTX or RANKL gene expression (p < 0.05). In both WT and p47phox KO mice, EtOH feeding reduced biochemical markers of bone formation (p < 0.05). In vitro EtOH exposure of ST2 cells increased ROS, which was blocked by pretreating with DPI or the NOX2 inhibitor gliotoxin. EtOH-induced RANKL and NOX2 gene expression were inhibited by the NOX4-specific inhibitor plumbagin. CONCLUSIONS: These data suggest that NOX2-derived ROS is necessary for EtOH-induced bone resorption. In osteoblasts, NOX2 and NOX4 appear to work in tandem to increase RANKL expression, whereas EtOH-mediated inhibition of bone formation occurs via a NOX2-independent mechanism.


Assuntos
Reabsorção Óssea/induzido quimicamente , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Reabsorção Óssea/enzimologia , Células Cultivadas , Feminino , Genótipo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Distribuição Aleatória
3.
J Pharmacol Exp Ther ; 343(2): 401-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22892342

RESUMO

Chronic alcohol abuse results in decreased bone mineral density (BMD), which can lead to increased fracture risk. In contrast, low levels of alcohol have been associated with increased BMD in epidemiological studies. Alcohol's toxic skeletal effects have been suggested to involve impaired vitamin D/calcium homeostasis. Therefore, dietary vitamin D supplementation may be beneficial in reducing bone loss associated with chronic alcohol consumption. Six-week-old female C57BL/6J mice were pair-fed ethanol (EtOH)-containing liquid diets (10 or 36% total calories) for 78 days. EtOH exposure at 10% calories had no effects on any measured bone or serum parameter. EtOH consumption at 36% of calories reduced BMD and bone strength (P<0.05), decreased osteoblastogenesis, increased osteoclastogenesis, suppressed 1,25-hydroxyvitamin D3 [1,25(OH)2D3] serum concentrations (P<0.05), and increased apoptosis in bone cells compared with pair-fed controls. In a second study, female mice were pair-fed 30% EtOH diets with or without dietary supplementation with vitamin D3 (cholecalciferol; VitD) for 40 days. VitD supplementation in the EtOH diet protected against cortical bone loss, normalized alcohol-induced hypocalcaemia, and suppressed EtOH-induced expression of receptor of nuclear factor-κB ligand mRNA in bone. In vitro, pretreatment of 1,25(OH)2D3 in osteoblastic cells inhibited EtOH-induced apoptosis. In EtOH/VitD mice circulating 1,25(OH)2D3 was lower compared with mice receiving EtOH alone (P<0.05), suggesting increased sensitivity to feedback control of VitD metabolism in the kidney. These findings suggest dietary VitD supplementation may prevent skeletal toxicity in chronic drinkers by normalizing calcium homeostasis, preventing apoptosis, and suppressing EtOH-induced increases in bone resorption.


Assuntos
Densidade Óssea/efeitos dos fármacos , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Osteoporose Pós-Menopausa/prevenção & controle , Vitamina D/farmacologia , Vitaminas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Fenômenos Biomecânicos , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Células Cultivadas , Depressores do Sistema Nervoso Central/antagonistas & inibidores , Colecalciferol/sangue , Colecalciferol/farmacologia , Etanol/antagonistas & inibidores , Feminino , Fêmur/patologia , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose Pós-Menopausa/induzido quimicamente , RNA/biossíntese , RNA/genética , Tomografia Computadorizada por Raios X , Vitamina D/sangue , Vitaminas/sangue , Aumento de Peso/efeitos dos fármacos
4.
Shoulder Elbow ; 13(6): 671-676, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34804216

RESUMO

BACKGROUND: Elbow and forearm motion are thought to affect elbow load transmission, yet little empirical evidence exists to quantify the biomechanics. METHODS: Eight fresh-frozen human cadaver upper extremities were utilized. A 100 N axial force was applied across the elbow joint at elbow flexion angles of (0°, 30°, 60°, and 90°) and forearm rotation angles (0°, 45° supination, and 45° pronation). Pressure mapping sensors were placed in both the radiocapitellar and ulnotrochlear joints. Force distributions and contact areas were measured, and paired t-tests were used for comparison (p < 0.05). RESULTS: The average maximum loading percentage of the radiocapitellar and ulnotrochlear joint pressures were 57.8 ± 4.6% and 42.2 ± 4.6%, respectively. Elbow flexion angle and forearm rotation did not significantly affect the joint loading. There was no significant difference between the contact areas of each joint, although ulnotrochlear and radiocapitellar joints demonstrated an inverse relationship. CONCLUSION: Our study is the only one to date to comprehensively evaluate loading mechanics throughout both functional elbow flexion and forearm rotation across both articulations. The load sharing ratio across the radiocapitellar and ulnotrochlear joints was 58%:42%, agreeing with previously reported ratios with limited parameters. A relationship may be present between increasing radiocapitellar and decreasing ulnotrochlear contact areas as elbow flexion increases.

5.
Exp Biol Med (Maywood) ; 233(11): 1348-58, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18703746

RESUMO

Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth have been less well examined. The current study compared effects of feeding soy protein isolate (SPI), WPH and RPI for 14 d on tibial bone mineral density (BMD) and bone mineral content (BMC) in intact and ovariectomized (OVX) rapidly growing female rats relative to animals fed casein (CAS). The effects of estrogenic status on responses to SPI were also explored. Tibial peripheral quantitative computerized tomography (pQCT) showed all three protein sources had positive effects on either BMD or BMC relative to CAS (P < 0.05), but SPI had greater effects in both intact and OVX female rats. SPI and E2 had positive effects on BMD and BMC in OVX rats (P < 0.05). However, trabecular BMD was lower in a SPI + E2 group compared to a CAS + E2 group. In OVX rats, SPI increased serum bone formation markers, and serum from SPI-fed rats stimulated osteoblastogenesis in ex vivo. SPI also suppressed the bone resorption marker RatLaps (P < 0.05). Both SPI and E2 increased alkaline phosphatase gene expression in bone, but only SPI decreased receptor activator of nuclear factor-kappaB ligand (RANKL) and estrogen receptor gene expression (P < 0.05). These data suggest beneficial bone effects of a soy diet in rapidly growing animals and the potential for early soy consumption to increase peak bone mass.


Assuntos
Densidade Óssea/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Proteínas de Soja/farmacologia , Fosfatase Alcalina/sangue , Animais , Biomarcadores/análise , Reabsorção Óssea , Diferenciação Celular , Células Cultivadas , Estradiol/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Proteínas do Leite/isolamento & purificação , Proteínas do Leite/farmacologia , Oryza/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteocalcina/sangue , Ovariectomia , Proteínas de Plantas/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas de Soja/isolamento & purificação , Tíbia/anatomia & histologia , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Proteínas do Soro do Leite
6.
Endocrinology ; 148(6): 2669-80, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17332064

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARgamma) regulates both glucose metabolism and bone mass. Recent evidence suggests that the therapeutic modulation of PPARgamma activity with antidiabetic thiazolidinediones elicits unwanted effects on bone. In this study, the effects of rosiglitazone on the skeleton of growing (1 month), adult (6 month), and aged (24 month) C57BL/6 mice were determined. Aging was identified as a confounding factor for rosiglitazone-induced bone loss that correlated with the increased expression of PPARgamma in bone marrow mesenchymal stem cells. The bone of young growing mice was least affected, although a significant decrease in bone formation rate was noted. In both adult and aged animals, bone volume was significantly decreased by rosiglitazone. In adult animals, bone loss correlated with attenuated bone formation, whereas in aged animals, bone loss was associated with increased osteoclastogenesis, mediated by increased receptor activator of nuclear factor-kappaB ligand (RANKL) expression. PPARgamma activation led to changes in marrow structure and function such as a decrease in osteoblast number, an increase in marrow fat cells, an increase in osteoclast number, and a loss of the multipotential character of marrow mesenchymal stem cells. In conclusion, rosiglitazone induces changes in bone reminiscent of aged bone and appears to induce bone loss by altering the phenotype of marrow mesenchymal stem cells.


Assuntos
Envelhecimento , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/fisiologia , Osteoporose/patologia , Tiazolidinedionas/farmacologia , Animais , Reabsorção Óssea/patologia , Osso e Ossos/anatomia & histologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Rosiglitazona , Tomografia Computadorizada por Raios X
7.
Endocrinology ; 148(4): 1654-65, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17194739

RESUMO

Gonadal function plays a major role in bone homeostasis. It is widely held that the skeletal consequences of hypogonadism are solely due to a loss of sex steroids; however, increases in bone turnover begin during perimenopause before decreases in serum estradiol levels. These data and our demonstration that inhibins acutely regulate bone cell differentiation in vitro led us to test whether inhibin A (InhA) regulates bone mass in vivo. Using a transgenic model of inducible human InhA expression, InhA increased total body bone mineral density, increased bone volume, and improved biomechanical properties at the proximal tibia in intact mice and also prevented the loss of BMD and bone volume and strength associated with gonadectomy at both the spine and proximal tibia. In addition, InhA increased mineral apposition rate, double-labeled surface, and serum osteocalcin levels in vivo and osteoblastogenesis ex vivo without affecting osteoclast number or activity. Together these results demonstrate novel stimulatory effects of InhA on the skeleton in vivo. These studies provide in vivo evidence demonstrating that gonadal factors other than sex steroids play an important role in regulating bone mass and strength and, combined with our previous clinical data, suggest that gonadal InhA may be a component of the normal endocrine repertoire that regulates bone quality in both the axial and appendicular skeleton.


Assuntos
Densidade Óssea , Osso e Ossos/anatomia & histologia , Inibinas/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Células Cultivadas , Força Compressiva/efeitos dos fármacos , Feminino , Humanos , Inibinas/genética , Inibinas/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Mifepristona/administração & dosagem , Orquiectomia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo
8.
Endocrinology ; 147(1): 166-78, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16239303

RESUMO

Chronic ethanol (EtOH) consumption can result in osteopenia. In the current study, we examined the modulation of EtOH-induced bone loss during pregnancy. Nonpregnant and pregnant dams were intragastrically infused either control or EtOH-containing diets throughout gestation (gestation d 5 through 20 or an equivalent period of 15 d) by total enteral nutrition. The effects of EtOH (8.5 to 14 g/kg/d) on tibial bone mineral density (BMD), mineral content (BMC), and bone mineral area were assessed at gestation d 20 via peripheral quantitative computerized tomography. EtOH caused a dose-dependent decrease in BMD and BMC without affecting bone mineral area. Trabecular BMD and BMC were significantly lower in EtOH-treated, nonpregnant dams, compared with pregnant cohorts at the same infused dose of EtOH and urinary ethanol concentrations. Static histomorphometric analysis of tibiae from pregnant rats after EtOH treatment showed decreased osteoblast and osteoid surface, indicating inhibited bone formation, whereas EtOH-treated cycling rats showed higher osteoclast and eroded surface, indicative of increased bone resorption. Circulating osteocalcin and 1,25-dihydroxyvitamin D3 were lower in both EtOH-fed nonpregnant and pregnant rats. Gene expression of osteoclast markers, 70 kDa v-ATPase, and tartrate-resistant acid phosphatase were increased selectively in nonpregnant EtOH-treated rats but not pregnant rats. Moreover, only nonpregnant EtOH-fed rats showed induction in bone marrow receptor activator of nuclear factor-kappaB ligand mRNA and decreased circulating 17beta-estradiol levels. Our data suggest that EtOH-induced bone loss in pregnant rats is mainly due to inhibited bone formation, whereas in nonpregnant rats, the data are consistent with increased osteoclast activation and bone resorption concomitant with decreased estradiol levels.


Assuntos
Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/induzido quimicamente , Estro/fisiologia , Etanol/toxicidade , Complicações na Gravidez/induzido quimicamente , Prenhez/fisiologia , Animais , Divisão Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Relação Dose-Resposta a Droga , Estro/efeitos dos fármacos , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley
9.
Diabetes ; 54(10): 2875-81, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186388

RESUMO

The effects of type 1 diabetes on de novo bone formation during tibial distraction osteogenesis (DO) and on intact trabecular and cortical bone were studied using nonobese diabetic (NOD) mice and comparably aged nondiabetic NOD mice. Diabetic mice received treatment with insulin, vehicle, or no treatment during a 14-day DO procedure. Distracted tibiae were analyzed radiographically, histologically, and by microcomputed tomography (microCT). Contralateral tibiae were analyzed using microCT. Serum levels of insulin, osteocalcin, and cross-linked C-telopeptide of type I collagen were measured. Total new bone in the DO gap was reduced histologically (P < or = 0.001) and radiographically (P < or = 0.05) in diabetic mice compared with nondiabetic mice but preserved by insulin treatment. Serum osteocalcin concentrations were also reduced in diabetic mice (P < or = 0.001) and normalized with insulin treatment. Evaluation of the contralateral tibiae by microCT and mechanical testing demonstrated reductions in trabecular bone volume and thickness, cortical thickness, cortical strength, and an increase in endosteal perimeter in diabetic animals, which were prevented by insulin treatment. These studies demonstrate that bone formation during DO is impaired in a model of type 1 diabetes and preserved by systemic insulin administration.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Osteogênese/fisiologia , Animais , Osso e Ossos/química , Colágeno/sangue , Colágeno Tipo I , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Imuno-Histoquímica , Insulina/sangue , Insulina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Osteocalcina/sangue , Osteogênese/efeitos dos fármacos , Osteogênese por Distração , Peptídeos/sangue , Receptor de Insulina/análise , Tíbia/química , Tomografia Computadorizada por Raios X
10.
Laryngoscope ; 116(3): 394-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16540896

RESUMO

BACKGROUND: Static slings are one of the most commonly used surgical rehabilitation methods in the management of chronic facial paralysis. Acellular human cadaveric dermis (Alloderm; Life Cell Corp., Branchburg, NJ) is used for this purpose; however, it has variable stretching properties that may necessitate additional "tuning-up" procedure(s). Acellular porcine dermis (Enduragen; Tissue Sciences Laboratories, plc., Aldershot, U.K.) was recently introduced as a biologic implant and it is compositionally similar to Alloderm. However, no data currently exist regarding its biomechanical properties and potential use as an alternative implant to Alloderm in static facial sling procedures. OBJECTIVE: The objective of this study was to compare the biomechanical properties of Alloderm and Enduragen for static facial sling procedures in the management of the paralytic face. STUDY DESIGN: This study consisted of an in vitro prospective study in an academic medical research setting. METHODS: Same size and thickness Alloderm and Enduragen samples were tested with MTS 858 Bionix materials test system for load-to-failure, displacement under increasing and constant stress, and stiffness. RESULTS: Enduragen showed significantly less elongation under increasing stress and at the beginning of constant stress. Load-to-failure and stiffness were significantly higher in Alloderm; however, both biomaterials have adequate stiffness and load-to-failure for a static facial sling procedure. CONCLUSIONS: Enduragen may serve as another potential static facial sling material, because it stretches significantly less than Alloderm under stress. Clinical experience is needed with Enduragen to determine its potential use as a static facial sling material.


Assuntos
Materiais Biocompatíveis , Colágeno , Derme/fisiologia , Transplante de Pele/fisiologia , Pele Artificial , Fenômenos Biomecânicos , Derme/transplante , Paralisia Facial/cirurgia , Humanos , Técnicas In Vitro , Estudos Prospectivos , Procedimentos de Cirurgia Plástica/métodos , Estresse Mecânico , Transplante Heterólogo
11.
Alcohol ; 39(3): 159-67, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17127135

RESUMO

Excessive alcohol consumption has been reported to interfere with human bone homeostasis and repair in multiple ways. Previous studies have demonstrated that chronic ethanol exposure in the rat via an intragastric dietary delivery system inhibits direct bone formation during distraction osteogenesis (DO, limb lengthening). The opportunity to extend the rat ethanol studies to mice is now possible due to the development of mouse models of DO. This study employed a novel combination of liquid ethanol diet delivery and a murine DO model to test the hypothesis that chronic ethanol exposure would result in deficits in direct bone formation during DO in contrast to the pair-fed controls. Twenty-eight 12-month-old C57BL/6 male mice were acclimated to the Lieber-DeCarli liquid control diet #710027 (Dyets Inc.) over a 1-week period. The mice were separated into two diet groups (n=14/group): pair-fed control and ethanol (diet #710260). After being on diet for 82 days, all mice underwent placement of an external fixator and osteotomy on the left tibia. Following a 6-day latency period, distraction began at a rate of 0.075 mm twice a day (b.i.d.) for 14 days. The weight changes were equivalent for both groups. The hypothesis that chronic ethanol exposure would inhibit direct bone formation and produce skeletal toxicity was supported by radiographic (P=.011) and histologic (P=.002) analyses of the % new bone formation in the DO gaps, by peripheral quantitative computed tomography analysis of the total volumetric bone mineral density of the contralateral proximal tibias (P<.001) and contralateral femoral necks (P=.012), by three-point bending on the contralateral tibias (P<.001 energy to break), by pin site bone formation measures (P<.001), and by ethanol-associated increased adipocyte area (adjacent to the gap) percentages (P<.002). We conclude that this model can be used to study the mechanisms underlying inhibition of bone formation by chronic ethanol exposure and to test preclinical interventions.


Assuntos
Etanol/farmacologia , Osteogênese por Distração , Osteogênese/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Absorciometria de Fóton , Adipócitos/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Tíbia/diagnóstico por imagem , Tíbia/crescimento & desenvolvimento
12.
Toxicol Sci ; 82(2): 656-60, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15470231

RESUMO

We tested the hypothesis that combined administration of IL-1 and TNF antagonists would protect fracture healing from inhibition by chronic ethanol exposure. Adult male rats were fed a liquid diet +/- ethanol (CON and ETOH) by intragastric infusion for three weeks prior to and three weeks after creation of an externally fixated tibial fracture. Beginning the day of fracture, one-half of each dietary group received 2.0 mg/kg/day IL-1ra and 2.0 mg/kg/2-days sTNFR1 (CON + ANTAG and ETOH + ANTAG), while all other animals received vehicle alone (CON + VEH and ETOH + VEH). Scoring of ex vivo radiographs and analysis by pQCT revealed a significantly lower incidence of bridging and reduced total mineral content in the ETOH + VEH group compared to all other groups. These results support, for the first time, the hypothesis that IL-1 and TNF antagonists are capable of protecting fracture healing from the inhibition associated with chronic ethanol consumption.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Etanol/antagonistas & inibidores , Etanol/toxicidade , Consolidação da Fratura/efeitos dos fármacos , Interleucina-1/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Calo Ósseo/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tomografia Computadorizada por Raios X , Aumento de Peso/efeitos dos fármacos
13.
Alcohol ; 48(2): 133-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24581955

RESUMO

Alcohol abuse is associated with the development of fatty liver disease and also with significant osteopenia in both genders. In this study, we examined ethanol-induced pathology in response to diets with differing fat/carbohydrate ratios. Male Sprague-Dawley rats were fed intragastrically with isocaloric liquid diets. Dietary fat content was either 5% (high carbohydrate, HC) or 45% (high fat, HF), with or without ethanol (12-13 g/kg/day). After 14, 28, or 65 days, livers were harvested and analyzed. In addition, bone morphology was analyzed after 65 days. HC rats gained more weight and had larger fat pads than HF rats with or without ethanol. Steatosis developed in HC + ethanol (HC + EtOH) compared to HF + ethanol (HF + EtOH) rats, accompanied by increased fatty acid (FA) synthesis and increased nuclear carbohydrate response element binding protein (ChREBP) (p < 0.05), but in the absence of effects on hepatic silent mating type information regulation 2 homolog (SIRT-1) or nuclear sterol regulatory binding element protein (SREBP-1c). Ethanol reduced serum leptin (p < 0.05) but not adiponectin. Over time, HC rats developed fatty liver independent of ethanol. FA degradation was significantly elevated by ethanol in both HC and HF groups (p < 0.05). HF + EtOH rats had increased oxidative stress from 28 days, increased necrosis compared to HF controls and higher expression of cytochromes P450, CYP2E1, and CYP4A1 compared to HC + EtOH rats (p < 0.05). In contrast, HC + EtOH rats had no significant increase in oxidative stress until day 65 with no observed increase in necrosis. Unlike liver pathology, no dietary differences were observed on ethanol-induced osteopenia in HC compared to HF groups. These data demonstrate that interactions between diet composition and alcohol are complex, dependent on the length of exposure, and are an important influence in development of fatty liver injury. Importantly, it appears that diet composition does not affect alcohol-associated skeletal toxicity.


Assuntos
Doenças Ósseas Metabólicas/etiologia , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Fígado Gorduroso/induzido quimicamente , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Citocromo P-450 CYP2E1/biossíntese , Citocromo P-450 CYP4A/biossíntese , Sistema Enzimático do Citocromo P-450/biossíntese , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Nutrição Enteral , Etanol/administração & dosagem , Ácidos Graxos/metabolismo , Hepatopatias Alcoólicas/etiologia , Masculino , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
14.
Bone ; 61: 176-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486955

RESUMO

Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (p<0.05), as well as a correlation between plasma IL-8 and increased bone resorption (p<0.05), as measured by NTx levels. In a total of 22 ER+ and 15 ER- primary invasive ductal carcinomas, all cases examined stained positive for IL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET-derived full length IL-8(1-77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6-77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/secundário , Interleucina-8/metabolismo , Osteólise/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Parafusos Ósseos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos
15.
PLoS One ; 7(8): e42967, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916188

RESUMO

Trisomy 21 affects virtually every organ system and results in the complex clinical presentation of Down syndrome (DS). Patterns of differences are now being recognized as patients' age and these patterns bring about new opportunities for disease prevention and treatment. Low bone mineral density (BMD) has been reported in many studies of males and females with DS yet the specific effects of trisomy 21 on the skeleton remain poorly defined. Therefore we determined the bone phenotype and measured bone turnover markers in the murine DS model Ts65Dn. Male Ts65Dn DS mice are infertile and display a profound low bone mass phenotype that deteriorates with age. The low bone mass was correlated with significantly decreased osteoblast and osteoclast development, decreased bone biochemical markers, a diminished bone formation rate and reduced mechanical strength. The low bone mass observed in 3 month old Ts65Dn mice was significantly increased after 4 weeks of intermittent PTH treatment. These studies provide novel insight into the cause of the profound bone fragility in DS and identify PTH as a potential anabolic agent in the adult low bone mass DS population.


Assuntos
Densidade Óssea/efeitos dos fármacos , Remodelação Óssea , Síndrome de Down/fisiopatologia , Hormônio Paratireóideo/uso terapêutico , Animais , Diferenciação Celular , Modelos Animais de Doenças , Síndrome de Down/patologia , Humanos , Masculino , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Hormônio Paratireóideo/farmacologia
16.
PLoS One ; 5(5): e10560, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20485499

RESUMO

Mutations in CRTAP (coding for cartilage-associated protein), LEPRE1 (coding for prolyl 3-hydroxylase 1 [P3H1]) or PPIB (coding for Cyclophilin B [CYPB]) cause recessive forms of osteogenesis imperfecta and loss or decrease of type I collagen prolyl 3-hydroxylation. A comprehensive analysis of the phenotype of the Crtap-/- mice revealed multiple abnormalities of connective tissue, including in the lungs, kidneys, and skin, consistent with systemic dysregulation of collagen homeostasis within the extracellular matrix. Both Crtap-/- lung and kidney glomeruli showed increased cellular proliferation. Histologically, the lungs showed increased alveolar spacing, while the kidneys showed evidence of segmental glomerulosclerosis, with abnormal collagen deposition. The Crtap-/- skin had decreased mechanical integrity. In addition to the expected loss of proline 986 3-hydroxylation in alpha1(I) and alpha1(II) chains, there was also loss of 3Hyp at proline 986 in alpha2(V) chains. In contrast, at two of the known 3Hyp sites in alpha1(IV) chains from Crtap-/- kidneys there were normal levels of 3-hydroxylation. On a cellular level, loss of CRTAP in human OI fibroblasts led to a secondary loss of P3H1, and vice versa. These data suggest that both CRTAP and P3H1 are required to maintain a stable complex that 3-hydroxylates canonical proline sites within clade A (types I, II, and V) collagen chains. Loss of this activity leads to a multi-systemic connective tissue disease that affects bone, cartilage, lung, kidney, and skin.


Assuntos
Doenças do Tecido Conjuntivo/patologia , Proteínas/metabolismo , Animais , Osso e Ossos/patologia , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Tecido Conjuntivo/patologia , Tecido Conjuntivo/ultraestrutura , Doenças do Tecido Conjuntivo/metabolismo , Proteínas da Matriz Extracelular , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Hidroxilação , Rim/patologia , Pulmão/patologia , Camundongos , Chaperonas Moleculares , Mutação/genética , Prolina/metabolismo , Pele/patologia , Espectrometria de Massas em Tandem
17.
PLoS One ; 4(4): e5275, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19357790

RESUMO

During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-beta has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-beta signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-beta signaling on bone remain unclear. To examine the role of TGF-beta in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-beta type I receptor (TbetaRI) kinase on bone mass, architecture and material properties. Inhibition of TbetaRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TbetaRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TbetaRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TbetaRI inhibitors may be effective in treating conditions of skeletal fragility.


Assuntos
Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Matriz Óssea/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/anatomia & histologia , Osso e Ossos/citologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor EphB4/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I
18.
Am J Pathol ; 172(2): 430-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18187573

RESUMO

The platelet glycoprotein Ib-IX receptor binds surface-bound von Willebrand factor and supports platelet adhesion to damaged vascular surfaces. A limited number of mutations within the glycoprotein Ib-IX complex have been described that permit a structurally altered receptor to interact with soluble von Willebrand factor, and this is the molecular basis of platelet-type von Willebrand disease. We have developed and characterized a mouse model of platelet-type von Willebrand disease (G233V) and have confirmed a platelet phenotype mimicking the human disorder. The mice have a dramatic increase in splenic megakaryocytes and splenomegaly. Recent studies have demonstrated that hematopoetic cells can influence the differentiation of osteogenic cells. Thus, we examined the skeletal phenotype of mice expressing the G233V variant complex. At 6 months of age, G233V mice exhibit a high bone mass phenotype with an approximate doubling of trabecular bone volume in both the tibia and femur. Serum measures of bone resorption were significantly decreased in G233V animals. With decreased bone resorption, cortical thickness was increased, medullary area decreased, and consequently, the mechanical strength of the femur was significantly increased. Using ex vivo bone marrow cultures, osteoclast-specific staining in the G233V mutant marrow was diminished, whereas osteoblastogenesis was unaffected. These studies provide new insights into the relationship between the regulation of megakaryocytopoiesis and bone mass.


Assuntos
Transtornos Plaquetários/fisiopatologia , Osso e Ossos , Fenótipo , Doenças de von Willebrand/fisiopatologia , Animais , Tempo de Sangramento , Transtornos Plaquetários/genética , Plaquetas/fisiologia , Osso e Ossos/patologia , Osso e Ossos/fisiologia , Diferenciação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Camundongos , Camundongos Transgênicos , Osteoclastos/citologia , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Ligação Proteica , Estrutura Secundária de Proteína , Esplenomegalia/etiologia , Trombopoese/fisiologia , Doenças de von Willebrand/genética , Fator de von Willebrand/química , Fator de von Willebrand/genética
19.
Neurosurg Rev ; 28(1): 53-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15480891

RESUMO

Our aim was to conduct a biomechanical comparison of the pull-out strengths of inside-outside (I/O) screws, cables, and bone screws to determine whether I/O screws provide greater pull-out resistance than cables or bone screws, and their effectiveness with the screw diameter. There is no remarkable biomechanical experimental study comparing the I/O technique with conventional spinal techniques. The diameter of the screw heads were also biomechanically tested to determine the optimal size that can be used. In this study, 45 blocks of 50x50x5 mm of "sawbone" (synthetic bone, model 1137, Pacific Research Laboratories, Vashon, WA, USA) were used as bone substitutes. Fifteen sets of 14-mm inside-outside Dynalok screws and nuts, 15 wire cables, and 15 bone screws were inserted into a separate sawbone block. An MTS Bionx materials testing machine was used to measure the load to failure of each implant. The mean values and standard deviations of each group were calculated and Student's t-test was used for comparison. The load to failure of the inside-outside screws was significantly greater than that of the cables (p<0.0000004) and the regular bone screws (p<0.000002). The results also revealed that increasing the diameter of the head of the screw also increases the resistance against the pull-out strengths. Thus, using a larger screw in occipitocervical stabilization provides safe and stable fixation of the occipital bone to the cervical spine. This study also proved that sawbone is a useful and reliable alternative to allogenic fresh cadaveric bone grafts or animal bones for certain biomechanical testing.


Assuntos
Parafusos Ósseos , Fios Ortopédicos , Estresse Mecânico , Resistência à Tração , Articulação Atlantoccipital/cirurgia , Substitutos Ósseos , Humanos , Instabilidade Articular/cirurgia , Teste de Materiais , Modelos Biológicos
20.
J Pharmacol Exp Ther ; 301(3): 1132-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12023547

RESUMO

Chronic alcohol abuse decreases bone mass, inhibits osteoblast differentiation and function, increases fracture incidence, and delays fracture healing. Four studies were designed to use intragastric ethanol delivery as part of a total enteral nutrition (TEN) system to determine the negative systemic effects of chronic ethanol on 1) the rat skeleton and 2) local rapid bone formation during limb lengthening (distraction osteogenesis, DO). In study 1, three-point bending tests demonstrated that after 75 days of ethanol exposure, the tibiae had significantly lower load to failure versus control diet (p = 0.0006) or ad libitum chow-fed rats (p = 0.0029). Study 2 examined alcohol's effects on the density and cross-sectional area of the proximal tibial metaphysis using peripheral quantitative computed tomography and found that after 25 days of ethanol exposure the trabecular volumetric bone mineral density (p = 0.011) and cortical cross-sectional area (p = 0.011) were lower compared with controls. In study 3, a comparison of distracted tibial radiographs and histological sections demonstrated ethanol-related decreases in both gap mineralization (p = 0.03) and bone column formation (p = 0.01). Histological comparisons in study 4 reproduced the ethanol-related deficits in new bone formation during DO (p = 0.001). These results indicate that the TEN system is a viable model to study ethanol's effects on the skeleton and that chronic ethanol delivery via TEN decreases trabecular bone density, cortical area, and mature bone strength. Also, the DO studies demonstrate, for the first time, that chronic ethanol inhibits rapid bone formation during limb lengthening.


Assuntos
Osso e Ossos/efeitos dos fármacos , Etanol/administração & dosagem , Nutrição Parenteral Total , Alcoolismo/patologia , Alcoolismo/fisiopatologia , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Desenvolvimento Ósseo/efeitos dos fármacos , Desenvolvimento Ósseo/fisiologia , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Depressores do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Esquema de Medicação , Intubação Gastrointestinal/métodos , Masculino , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Nutrição Parenteral Total/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA