Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 17(12): e1009986, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941867

RESUMO

TP53 and ARID1A are frequently mutated across cancer but rarely in the same primary tumor. Endometrial cancer has the highest TP53-ARID1A mutual exclusivity rate. However, the functional relationship between TP53 and ARID1A mutations in the endometrium has not been elucidated. We used genetically engineered mice and in vivo genomic approaches to discern both unique and overlapping roles of TP53 and ARID1A in the endometrium. TP53 loss with oncogenic PIK3CAH1047R in the endometrial epithelium results in features of endometrial hyperplasia, adenocarcinoma, and intraepithelial carcinoma. Mutant endometrial epithelial cells were transcriptome profiled and compared to control cells and ARID1A/PIK3CA mutant endometrium. In the context of either TP53 or ARID1A loss, PIK3CA mutant endometrium exhibited inflammatory pathway activation, but other gene expression programs differed based on TP53 or ARID1A status, such as epithelial-to-mesenchymal transition. Gene expression patterns observed in the genetic mouse models are reflective of human tumors with each respective genetic alteration. Consistent with TP53-ARID1A mutual exclusivity, the p53 pathway is activated following ARID1A loss in the endometrial epithelium, where ARID1A normally directly represses p53 pathway genes in vivo, including the stress-inducible transcription factor, ATF3. However, co-existing TP53-ARID1A mutations led to invasive adenocarcinoma associated with mutant ARID1A-driven ATF3 induction, reduced apoptosis, TP63+ squamous differentiation and invasion. These data suggest TP53 and ARID1A mutations drive shared and distinct tumorigenic programs in the endometrium and promote invasive endometrial cancer when existing simultaneously. Hence, TP53 and ARID1A mutations may co-occur in a subset of aggressive or metastatic endometrial cancers, with ARID1A loss promoting squamous differentiation and the acquisition of invasive properties.


Assuntos
Proteínas de Ligação a DNA/genética , Neoplasias do Endométrio/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/patologia , Endométrio/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Mutação/genética
2.
Hum Mol Genet ; 29(20): 3412-3430, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33075803

RESUMO

Although ARID1A mutations are a hallmark feature, mutations in other SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling subunits are also observed in endometrial neoplasms. Here, we interrogated the roles of Brahma/SWI2-related gene 1 (BRG1, SMARCA4), the SWI/SNF catalytic subunit, in the endometrial epithelium. BRG1 loss affects more than one-third of all active genes and highly overlaps with the ARID1A gene regulatory network. Chromatin immunoprecipitation studies revealed widespread subunit-specific differences in transcriptional regulation, as BRG1 promoter interactions are associated with gene activation, while ARID1A binding is associated with gene repression. However, we identified a physiologically relevant subset of BRG1 and ARID1A co-regulated epithelial identity genes. Mice were genetically engineered to inactivate BRG1 specifically in the endometrial epithelium. Endometrial glands were observed embedded in uterine myometrium, indicating adenomyosis-like phenotypes. Molecular similarities were observed between BRG1 and ARID1A mutant endometrial cells in vivo, including loss of epithelial cell adhesion and junction genes. Collectively, these studies illustrate overlapping contributions of multiple SWI/SNF subunit mutations in the translocation of endometrium to distal sites, with loss of cell integrity being a common feature in SWI/SNF mutant endometrial epithelia.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Endométrio/patologia , Epitélio/patologia , Regulação da Expressão Gênica , Mutação , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Endométrio/metabolismo , Epitélio/metabolismo , Feminino , Camundongos , Camundongos Knockout
3.
Hum Reprod ; 35(1): 58-69, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886851

RESUMO

STUDY QUESTION: Is it possible to establish a genetically engineered mouse model (GEMM) of endometriosis that mimics the natural spread of invasive endometrium? SUMMARY ANSWER: Endometriosis occurs in an ARID1A (AT-rich interactive domain-containing protein 1A) and PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) mutant GEMM of endometrial dysfunction following salpingectomy. WHAT IS KNOWN ALREADY: Although mouse models of endometriosis have long been established, most models rely on intraperitoneal injection of uterine fragments, steroid hormone treatments or the use of immune-compromised mice. STUDY DESIGN, SIZE, DURATION: Mice harboring the lactotransferrin-Cre (LtfCre0/+), Arid1afl, (Gt)R26Pik3ca*H1047R and (Gt)R26mTmG alleles were subject to unilateral salpingectomies at 6 weeks of age. Control (n = 9), LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/+ (n = 8) and LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/fl (n = 9) were used for the study. The (Gt)R26mTmG allele was used for the purpose of fluorescent lineage tracing of endometrial epithelium. LtfCre0/+; (Gt)R26mTmG (n = 3) and LtfCre0/+; (Gt)R26Pik3ca*H1047R/mTmG; Arid1afl/fl (n = 4) were used for this purpose. Mice were followed until the endpoint of vaginal bleeding at an average time of 17 weeks of age. PARTICIPANTS/MATERIALS, SETTING, METHODS: At 6 weeks of age, mice were subjected to salpingectomy surgery. Mice were followed until the time point of vaginal bleeding (average 17 weeks), or aged for 1 year in the case of control mice. At time of sacrifice, endometriotic lesions, ovaries and uterus were collected for the purpose of histochemical and immunohistochemical analyses. Samples were analyzed for markers of the endometriotic tissue and other relevant biomarkers. MAIN RESULTS AND THE ROLE OF CHANCE: Following salpingectomy, LtfCre0/+; (Gt)R26Pik3ca*H1047R/mTmG; Arid1afl/fl mice developed endometriotic lesions, including lesions on the ovary, omentum and abdominal wall. Epithelial glands within lesions were negative for ARID1A and positive for phospho-S6 staining, indicating ARID1A-PIK3CA co-mutation status, and expressed EGFP (enhanced green fluorescent protein), indicating endometrial origins. LARGE-SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: LtfCre0/+; (Gt)R26Pik3ca*H1047R; Arid1afl/fl mice develop vaginal bleeding as a result of endometrial dysfunction at an average age of 17 weeks and must be sacrificed. Furthermore, while this model mimics the natural spread of endometriotic tissue directly from the uterus to the peritoneum, the data presented do not reject current hypotheses on endometriosis pathogenesis. WIDER IMPLICATIONS OF THE FINDINGS: The idea that endometriosis is the result of abnormal endometrial tissue colonizing the peritoneum via retrograde menstruation has gained widespread support over the past century. However, most models of endometriosis take for granted this possibility, relying on the surgical removal of bulk uterine tissue and subsequent transplantation into the peritoneum. Growing evidence suggests that somatic mutations in ARID1A and PIK3CA are present in the endometrial epithelium. The establishment of a GEMM which mimics the natural spread of endometrium and subsequent lesion formation supports the hypothesis that endometriosis is derived from mutant endometrial epithelium with invasive properties. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the American Cancer Society PF-17-163-02-DDC (M.R.W.), the Mary Kay Foundation 026-16 (R.L.C.) and the Ovarian Cancer Research Fund Alliance 457446 (R.L.C.). The authors declare no competing interests.


Assuntos
Endometriose , Idoso , Animais , Modelos Animais de Doenças , Endométrio , Feminino , Humanos , Distúrbios Menstruais , Camundongos , Peritônio
4.
Stem Cell Res ; 46: 101849, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32464345

RESUMO

The Wnt pathway co-receptor, Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5), labels tumor-prone stem cell populations in certain types of tissue. In this study, we show that ARID1A and PIK3CA mutations in LGR5+ cells result in renal angiosarcomas in adult mice. The tumors originate in the renal medulla. We further show that LGR5 labels SOX17+/CD31+/CD34+/CD133+/AQP1+/CD146+ endothelial progenitor cells within the descending vasa recta or straight arterioles of the kidney, which are specialized capillaries that maintain medullary osmotic gradients necessary for water reabsorption and the production of concentrated urine. LGR5+ endothelial progenitor cells are tightly associated with contractile pericytes within the descending vasa recta. Long-term in vivo lineage tracing revealed that LGR5+ cells give rise to renal medullary vasculature. We further show that LGR5+ cells are activated in response to ischemic kidney injury. Our findings uncover a physiologically relevant endothelial progenitor cell population within the kidney vasa recta.


Assuntos
Células Progenitoras Endoteliais , Neoplasias , Animais , Capilares , Rim , Medula Renal , Camundongos , Receptores Acoplados a Proteínas G/genética
5.
Cell Rep ; 33(6): 108366, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176148

RESUMO

Endometriosis affects 1 in 10 women and is characterized by the presence of abnormal endometrium at ectopic sites. ARID1A mutations are observed in deeply invasive forms of the disease, often correlating with malignancy. To identify epigenetic dependencies driving invasion, we use an unbiased approach to map chromatin state transitions accompanying ARID1A loss in the endometrium. We show that super-enhancers marked by high H3K27 acetylation are strongly associated with ARID1A binding. ARID1A loss leads to H3K27 hyperacetylation and increased chromatin accessibility and enhancer RNA transcription at super-enhancers, but not typical enhancers, indicating that ARID1A normally prevents super-enhancer hyperactivation. ARID1A co-localizes with P300 at super-enhancers, and genetic or pharmacological inhibition of P300 in ARID1A mutant endometrial epithelia suppresses invasion and induces anoikis through the rescue of super-enhancer hyperacetylation. Among hyperactivated super-enhancers, SERPINE1 (PAI-1) is identified as an essential target gene driving ARID1A mutant endometrial invasion. Broadly, our findings provide rationale for therapeutic strategies targeting super-enhancers in ARID1A mutant endometrium.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos , Camundongos , Mutação , Coelhos , Ratos
6.
Nat Commun ; 10(1): 3554, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391455

RESUMO

ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue.


Assuntos
Transformação Celular Neoplásica/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas de Ligação a DNA/genética , Neoplasias do Endométrio/genética , Transição Epitelial-Mesenquimal/genética , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular , Movimento Celular/genética , Cromatina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Neoplasias do Endométrio/patologia , Endométrio/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Haploinsuficiência , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Transgênicos , Miométrio/patologia , Invasividade Neoplásica/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA