Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Am J Orthod Dentofacial Orthop ; 160(3): 451-458.e2, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34456006

RESUMO

INTRODUCTION: Three-dimensional (3D) printing technologies are profoundly changing the landscape of orthodontics. To optimize treatment-oriented applications, dimensional fidelity is required for 3D-printed orthodontic models. This study aimed to evaluate the effect of build angle and layer height on the accuracy of 3D-printed dental models and if each of their influences on print accuracy was conditional on the other. METHODS: A maxillary cast was scanned using an intraoral scanner. One hundred thirty-two study models were printed at various combinations of build angle (0°, 30°, 60°, 90°) and layer height (20 µm, 50 µm, 100 µm) with a digital light processing printer (n = 11 per group). The models were digitally scanned, and deviation analyzed using a 3D best-fit algorithm in metrology software. RESULTS: A statistically significant interaction was consistently found between build angle and layer height for each positive deviation, negative deviation, and proportion out of bounds. Average deviations of all study models were within clinically acceptable ranges, but the least accurate models were printed at 0°/20 µm. Although there was a tendency for an oblique build angle of 30° or 60° with a smaller layer height of 20 µm or 50 µm to print the most accurate models, 95 % confidence intervals overlapped with all other angles and heights except for 0°/20 µm. CONCLUSIONS: Build angle and layer height have statistically significant interactive effects on the accuracy of 3D-printed dental models. Overall, digital light processing printers produced models within clinically acceptable bounds, but the choice of build angle and layer height should be considered in conjunction with the clinical application, desired print time, and preferred efficiency of each print job.


Assuntos
Modelos Dentários , Ortodontia , Humanos , Maxila , Impressão Tridimensional , Software
2.
Am J Bot ; 107(1): 164-170, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31889299

RESUMO

PREMISE: Variation in pollen-ovule ratios is thought to reflect the degree of pollen transfer efficiency-the more efficient the process, the fewer pollen grains needed. Few studies have directly examined the relationship between pollen-ovule ratio and pollen transfer efficiency. For active pollination in the pollination brood mutualisms of yuccas and yucca moths, figs and fig wasps, senita and senita moths, and leafflowers and leafflower moths, pollinators purposefully collect pollen and place it directly on the stigmatic surface of conspecific flowers. The tight coupling of insect reproductive interests with pollination of the flowers in which larvae develop ensures that pollination is highly efficient. METHODS: We used the multiple evolutionary transitions between passive pollination and more efficient active pollination to test if increased pollen transfer efficiency leads to reduced pollen-ovule ratios. We collected pollen and ovule data from a suite of plant species from each of the pollination brood mutualisms and used phylogenetically controlled tests and sister-group comparisons to examine whether the shift to active pollination resulted in reduced pollen-ovule ratios. RESULTS: Across all transitions between passive and active pollination in plants, actively pollinated plants had significantly lower pollen-ovule ratios than closely related passively pollinated taxa. Phylogenetically corrected comparisons demonstrated that actively pollinated plant species had an average 76% reduction in the pollen-ovule ratio. CONCLUSIONS: The results for active pollination systems support the general utility of pollen-ovule ratios as indicators of pollination efficiency and the central importance of pollen transfer efficiency in the evolution of pollen-ovule ratio.


Assuntos
Óvulo Vegetal , Polinização , Animais , Flores , Pólen , Simbiose
3.
Am J Orthod Dentofacial Orthop ; 156(2): 283-289, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31375239

RESUMO

INTRODUCTION: Many variables can affect the accuracy of 3D-printed orthodontic models, and the effects of different printing parameters on the clinical utility of the printed models are just beginning to be understood. The objective of this study was to investigate the effect of print layer height on the assessment of 3D-printed orthodontic models with the use of the American Board of Orthodontics Cast-Radiograph Evaluation grading system. METHODS: Twelve cases were scanned using a desktop model scanner and 3D-printed using a stereolithography-based printer at three different layer heights (25, 50, and 100-µm; n = 12 per group). All models were scored by eleven graders using the Cast-Radiograph Evaluation grading system. All models were scored a second time, at least two weeks later. RESULTS: No statistically significant effects of print layer height were found on the scoring of the models for any of the grading metrics or total score. 3D-printed models of each layer height were highly positively correlated with stone models for the total score, with the strongest correlation found with models printed at 100-µm. CONCLUSIONS: 100-µm layer height 3D-printed models are potentially clinically acceptable for the purposes of evaluation of treatment outcomes, diagnosis and treatment planning, and residency training.


Assuntos
Modelos Dentários , Ortodontia/métodos , Impressão Tridimensional , Humanos , Modelos Dentários/normas , Impressão Tridimensional/normas , Software , Estereolitografia , Tecnologia Odontológica , Fatores de Tempo
4.
Bull Math Biol ; 74(9): 2142-64, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22806690

RESUMO

A mathematical model for the plant-pollinator-robber interaction is studied to understand the factors leading to the widespread occurrence and stability of such interactions. In the interaction, a flowering plant provides resource for its pollinator and the pollinator has both positive and negative effects on the plant. A nectar robber acts as a plant predator, consuming a common resource with the pollinator, but with a different functional response. Using dynamical systems theory, mechanisms of species coexistence are investigated to show how a robber could invade the plant-pollinator system and persist stably with the pollinator. In addition, circumstances are demonstrated in which the pollinator's positive and negative effects on the plant could determine the robber's invasibility and the three-species coexistence.


Assuntos
Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Polinização/fisiologia , Animais , Flores/fisiologia , Néctar de Plantas , Simbiose
5.
Ecology ; 91(5): 1286-95, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20503862

RESUMO

Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.


Assuntos
Modelos Biológicos , Dinâmica Populacional , Simbiose
6.
Oecologia ; 164(3): 741-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20526780

RESUMO

Recent research has shown that many mutualistic communities display non-random structures. While our understanding of the structural properties of mutualistic communities continues to improve, we know little of the biological variables resulting in them. Mutualistic communities include those formed between ants and extrafloral (EF) nectar-bearing plants. In this study, we examined the contributions of plant and ant abundance, plant and ant size, and plant EF nectar resources to the network structures of nestedness and interaction frequency of ant-plant networks across five sites within one geographic locality in the Sonoran Desert. Interactions between ant and plant species were largely symmetric. That is, ant and plant species exerted nearly equivalent quantitative interaction effects on one another, as measured by their frequency of interaction. The mutualistic ant-plant networks also showed nested patterns of structure, in which there was a central core of generalist ant and plant species interacting with one another and few specialist-specialist interactions. Abundance and plant size and ant body size were the best predictors of symmetric interactions between plants and ants, as well as nestedness. Despite interactions in these communities being ultimately mediated by EF nectar resources, the number of EF nectaries had a relatively weak ability to explain variation in symmetric interactions and nestedness. These results suggest that different mechanisms may contribute to structure of bipartite networks. Moreover, our results for ant-plant mutualistic networks support the general importance of species abundances for the structure of species interactions within biological communities.


Assuntos
Formigas/fisiologia , Néctar de Plantas , Animais , Formigas/anatomia & histologia , Tamanho Corporal , Desenvolvimento Vegetal , Plantas/anatomia & histologia , Densidade Demográfica , Dinâmica Populacional
7.
Med Sci Educ ; 30(1): 243-252, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34457664

RESUMO

The integrated curriculum is becoming a popular concept among dental schools. The purpose of this study was to query dental students at the University of Texas Health Science Center at Houston - School of Dentistry (UTSD) to elucidate their level of interest in the integrated curriculum, perception of how much integration is currently occurring, and identify challenges to integration. To address this question, dental students at UTSD were invited to participate in a survey. Participants reported their perspectives on integration of sciences. All survey participants agreed that it is beneficial to integrate clinical and basic sciences and that basic science educators were incorporating clinical relevance in their regular teaching. The third and fourth year classes, classes that had been exposed to general as well as all specialty dentistry clinics, agreed that basic sciences are being incorporated into most clinical teaching. Top two barriers to integration identified by the students were lack of crossover knowledge of faculty, and insufficient time to explore connections between basic sciences and clinical sciences because of the volume of information that needs to be covered. In conclusion, student perception at UTSD is that overall basic and clinical sciences are being integrated throughout the curriculum.

8.
Ecol Lett ; 12(12): 1357-66, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19807773

RESUMO

Interactions between two populations are often defined by their interaction outcomes; that is, the positive, neutral, or negative effects of species on one another. Yet, signs of outcomes are not absolute, but vary with the biotic and abiotic contexts of interactions. Here, we develop a general theory for transitions between outcomes based on consumer-resource (C-R) interactions in which one or both species exploit the other as a resource. Simple models of C-R interactions revealed multiple equilibria, including one for species coexistence and others for extinction of one or both species, indicating that species' densities alone could determine the fate of interactions. All possible outcomes [(+ +), (+ -), (--), (+ 0), (- 0), (0 0)] of species coexistence emerged merely through changes in parameter values of C-R interactions, indicating that variation in C-R interactions resulting from biotic and abiotic conditions could determine shifts in outcomes. These results suggest that C-R interactions can provide a broad mechanism for understanding context- and density-dependent transitions between interaction outcomes.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Comportamento Competitivo , Extinção Biológica , Interações Hospedeiro-Parasita , Comportamento Predatório , Simbiose
9.
Ecology ; 90(9): 2384-92, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19769117

RESUMO

Context dependency, variation in the outcome of species interactions with biotic and abiotic conditions, is increasingly considered ubiquitous among mutualisms. Despite several qualitative reviews of many individual empirical studies, there has been little quantitative synthesis examining the generality of context dependency, or conditions that may promote it. We conducted a meta-analysis of ant-plant protection mutualisms to examine the generality of context-dependent effects of ants on herbivory and plant performance (growth, reproduction). Our results show that ant effects on plants are not generally context dependent, but instead are routinely positive and rarely neutral, as overall effect sizes of ants in reducing herbivory and increasing plant performance were positive and significantly greater than 0. The magnitude of these positive effects did vary, however. Variation in plant performance was not explained by the type of biotic or abiotic factor examined, including plant rewards (extrafloral nectar, food bodies, domatia), ant species richness, plant growth form, or latitude. With the exception of plant growth form, these factors did contribute to the effects of ants in reducing herbivory. Reductions in herbivory were greater for plants with than without domatia, and greatest for plants with both domatia and food bodies. Effect sizes of ants in reducing herbivory decreased, but remained positive, with latitude and ant species richness. Effect sizes in reducing herbivory were greater in tropical vs. temperate systems. Although ant-plant interactions have been pivotal in the study of context dependency of mutualisms, our results, along with other recent meta-analyses, indicate that context dependency may not be a general feature of mutualistic interactions. Rather, ant-plant protection mutualisms appear to be routinely positive for plants, and only occasionally neutral.


Assuntos
Formigas/fisiologia , Ecossistema , Magnoliopsida/fisiologia , Simbiose , Animais , Comportamento Alimentar/fisiologia , Modelos Biológicos
10.
Ecol Lett ; 11(3): 208-16, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18070101

RESUMO

Key advances are being made on the structures of predator-prey food webs and competitive communities that enhance their stability, but little attention has been given to such complexity-stability relationships for mutualistic communities. We show, by way of theoretical analyses with empirically informed parameters, that structural properties can alter the stability of mutualistic communities characterized by nonlinear functional responses among the interacting species. Specifically, community resilience is enhanced by increasing community size (species diversity) and the number of species interactions (connectivity), and through strong, symmetric interaction strengths of highly nested networks. As a result, mutualistic communities show largely positive complexity-stability relationships, in opposition to the standard paradox. Thus, contrary to the commonly-held belief that mutualism's positive feedback destabilizes food webs, our results suggest that interplay between the structure and function of ecological networks in general, and consideration of mutualistic interactions in particular, may be key to understanding complexity-stability relationships of biological communities as a whole.


Assuntos
Ecologia , Ecossistema , Modelos Biológicos , Animais , Simulação por Computador
11.
Ecology ; 89(5): 1364-74, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18543629

RESUMO

Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.


Assuntos
Formigas/fisiologia , Cactaceae/fisiologia , Ecossistema , Animais , Comportamento Alimentar/fisiologia , Flores/fisiologia , Densidade Demográfica
12.
Ecology ; 88(3): 706-15, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17503598

RESUMO

Central to the ecology and evolution of a broad range of plants is understanding why they routinely have submaximal reproduction manifested as low seed : ovule and fruit : flower ratios. We know much less about the processes responsible for low seed : ovule ratios than we do for fruit : flower ratios. Current hypotheses for low seed : ovule ratios are largely drawn from those for fruit : flower ratios, including proximate (ecological) causes of pollen limitation, resource limitation, and pollen quality, as well as the ultimate (evolutionary) hypothesis of "bet hedging" on stochastic pollination. Yet, such mechanisms operating on fruit : flower ratios at the whole-plant level may not best explain low seed : ovule ratios at the individual-flower level. We tested each of these proximate and ultimate causes for low seed : ovule ratios using the specialized pollination mutualism between senita cacti (Pachycereus schottii) and senita moths (Upiga virescens). Seed : ovule ratios were consistently low (approximately 0.61). Such excess ovule production by senita likely has a strong genetic component given the significant differences among plants in ovule number and the consistency in ovule production by plants within and among flowering seasons. Excess ovule production and low seed : ovule ratios could not be explained by pollen limitation, resource limitation, pollen quality, or bet hedging. Nevertheless, phenotypic selection analyses did show significant selection gradients for increased ovule number, suggesting that other evolutionary processes may be responsible for excess ovule production and low seed : ovule ratios. In contrast, low fruit : flower ratios at the whole-plant level were explained by an apparent equilibrium between pollen and resource limitation. Thus, mechanisms responsible for low fruit : flower ratios at the whole-plant level are not necessarily in accord with those of low seed : ovule ratios at the individual-flower level. This suggests that we may need to adopt a more pluralistic approach to seed : ovule ratios and consider alternative hypotheses, including a greater array of proximate and ultimate causes. Initial results of this study suggest that floral allometry, selection on correlated floral traits, stigma clogging with pollen grains, and style clogging with pollen tubes may provide promising avenues for understanding low seed : ovule ratios.


Assuntos
Evolução Biológica , Cactaceae/fisiologia , Flores/fisiologia , Modelos Biológicos , Fenótipo , Sementes/fisiologia , Análise de Variância , Animais , Arizona , Mariposas/fisiologia , Reprodução/fisiologia
13.
Am Nat ; 159(3): 231-44, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18707376

RESUMO

We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density-dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed-eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

14.
Proc Biol Sci ; 269(1498): 1405-12, 2002 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-12079665

RESUMO

Interspecific interactions can affect population dynamics and the evolution of species traits by altering demographic rates such as reproduction and survival. The influence of mutualism on population processes is thought to depend on both the benefits and costs of the interaction. However, few studies have explicitly quantified both benefits and costs in terms of demographic rates; furthermore there has been little consideration as to how benefits and costs depend on the demographic effects of factors extrinsic to the interaction. I studied how benefits (pollination) and costs (larval fruit consumption) of pollinating seed-consumers (senita moths) affect the reproduction of senita cacti and how these effects may rely on extrinsic water limitation for reproduction. Fruit initiation was not limited by moth pollination, but survival of initiated fruit increased when moth eggs were removed from flowers. Watered cacti produced more flowers and initiated more fruit from hand-pollinated flowers than did unwatered cacti, but fruit initiation remained low despite excess pollen. Even though water, pollination and larvae each affected a component of cactus reproduction, when all of these factors were included in a factorial experiment, pollination and water determined rates of reproduction. Counter-intuitively, larval fruit consumption had a negligible effect on cactus reproduction. By quantifying both benefits and costs of mutualism in terms of demographic rates, this study demonstrates that benefits and costs can be differentially influential to population processes and that interpretation of their influences can depend on demographic effects of factors extrinsic to the interaction.


Assuntos
Cactaceae/fisiologia , Comportamento Alimentar , Mariposas/fisiologia , Pólen , Reprodução/fisiologia , Sementes/fisiologia , Animais , Cactaceae/crescimento & desenvolvimento , Flores/fisiologia , Frutas/fisiologia , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Dinâmica Populacional , Estações do Ano , Sementes/crescimento & desenvolvimento , Simbiose , Água
15.
Proc Biol Sci ; 271(1550): 1807-14, 2004 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-15315896

RESUMO

Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite-host or predator-prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii)-senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre-adult survival of the pollinating seed-consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.


Assuntos
Evolução Biológica , Modelos Biológicos , Simbiose , Animais , Cactaceae/genética , Cactaceae/fisiologia , Flores/fisiologia , Frutas/fisiologia , Mariposas/genética , Mariposas/fisiologia , Densidade Demográfica , Dinâmica Populacional
16.
Oecologia ; 114(3): 368-375, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28307780

RESUMO

We report a new obligate pollination mutualism involving the senita cactus, Lophocereus schottii (Cactaceae, Pachyceereae), and the senita moth, Upiga virescens (Pyralidae, Glaphyriinae) in the Sonoran Desert and discuss the evolution of specialized pollination mutualisms. L. schottii is a night-blooming, self-incompatible columnar cactus. Beginning at sunset, its flowers are visited by U. virescens females, which collect pollen on specialized abdominal scales, actively deposit pollen on flower stigmas, and oviposit a single egg on a flower petal. Larvae spend 6 days eating ovules before exiting the fruit and pupating in a cactus branch. Hand-pollination and pollinator exclusion experiments at our study site near Bahia Kino, Sonora, Mexico, revealed that fruit set in L. schottii is likely to be resource limited. About 50% of hand-outcrossed and open-pollinated senita flowers abort by day 6 after flower opening. Results of exclusion experiments indicated that senita moths accounted for 75% of open-pollinated fruit set in 1995 with two species of halictid bees accounting for the remaining fruit set. In 1996, flowers usually closed before sunrise, and senita moths accounted for at least 90% of open-pollinated fruit set. The net outcome of the senita/senita moth interaction is mutualistic, with senita larvae destroying about 30% of the seeds resulting from pollination by senita moths. Comparison of the senita system with the yucca/yucca moth mutualism reveals many similarities, including reduced nectar production, active pollination, and limited seed destruction. The independent evolution of many of the same features in the two systems suggests that a common pathway exists for the evolution of these highly specialized pollination mutualisms. Nocturnal flower opening, self-incompatible breeding systems, and resource-limited fruit production appear to be important during this evolution.

17.
Oecologia ; 126(4): 575-586, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28547243

RESUMO

Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.

18.
Oecologia ; 107(1): 87-94, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28307195

RESUMO

Effects of above-ground herbivory on short-term plant carbon allocation were studied using maize (Zea mays) and a generalist lubber grasshopper (Romalea guttata). We hypothesized that above-ground herbivory stimulates current net carbon assimilate allocation to below-ground components, such as roots, root exudation and root and soil respiration. Maize plants 24 days old were grazed (c. 25-50% leaf area removed) by caging grasshoppers around individual plants and 18 h later pulse-labelled with14CO2. During the next 8 h,14C assimilates were traced to shoots, roots, root plus soil respiration, root exudates, rhizosphere soil, and bulk soil using carbon-14 techniques. Significant positive relationships were observed between herbivory and carbon allocated to roots, root exudates, and root and soil respiration, and a significant negative relationship between herbivory and carbon allocated to shoots. No relationship was observed between herbivory and14C recovered from soil. While herbivory increased root and soil respiration, the peak time for14CO2 evolved as respiration was not altered, thereby suggesting that herbivory only increases the magnitude of respiration, not patterns of translocation through time. Although there was a trend for lower photosynthetic rates of grazed plants than photosynthetic rates of ungrazed plants, no significant differences were observed among grazed and ungrazed plants. We conclude that above-ground herbivory can increase plant carbon fluxes below ground (roots, root exudates, and rhizosphere respiration), thus increasing resources (e.g., root exudates) available to soil organisms, especially microbial populations.

19.
Science ; 313(5795): 1887; author reply 1887, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-17008511

RESUMO

Bascompte et al. (Reports, 21 April 2006, p. 431) used network asymmetries to explain mathematical conditions necessary for stability in historic models of mutualism. The Lotka-Volterra equations they used artificially created conditions in which some factor, such as asymmetric interaction strengths, is necessary for community coexistence. We show that a more realistic model incorporating nonlinear functional responses requires no such condition and is consistent with their data.


Assuntos
Biodiversidade , Evolução Biológica , Fenômenos Fisiológicos Vegetais , Simbiose , Animais , Matemática , Modelos Biológicos , Dinâmica não Linear , Pólen
20.
Theor Popul Biol ; 61(3): 251-63, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12027612

RESUMO

Coevolved mutualisms, such as those between senita cacti, yuccas, and their respective obligate pollinators, benefit both species involved in the interaction. However, in these pollination mutualisms the pollinator's larvae impose a cost on plants through consumption of developing seeds and fruit. The effects of pollinators on benefits and costs are expected to vary with the abundance of pollinators, because large population sizes result in more eggs and larval seed-eaters. Here, we develop the hypothesis that fruit abortion, which is common in yucca, senita, and plants in general, could in some cases have the function of limiting pollinator abundance and, thereby, increasing fruit production. Using a general steady-state model of fruit production and pollinator dynamics, we demonstrate that plants involved in pollinating seed-eater mutualisms can increase their fecundity by randomly aborting fruit. We show that the ecological conditions under which fruit abortion can improve plants fecundity are not unusual. They are best met when the plant is long-lived, the population dynamics of the pollinator are much faster than those of the plant, the loss of one fruit via abortion kills a larva that would have the expectation of destroying more than one fruit through its future egg laying as an adult moth, and the effects of fruit abortion on pollinator abundance are spatially localized. We then use the approach of adaptive dynamics to find conditions under which a fruit abortion strategy based on regulating the pollinator population could feasibly evolve in this type of plant-pollinator interaction.


Assuntos
Ecologia , Frutas/fisiologia , Insetos/fisiologia , Pólen , Simbiose , Animais , Evolução Biológica , Cadeia Alimentar , Modelos Biológicos , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA